Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -4,6 +4,11 @@ from transformers import AutoTokenizer, AlbertForSequenceClassification
|
|
| 4 |
import numpy as np
|
| 5 |
import os
|
| 6 |
import gdown
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
# Define Google Drive folder IDs for each model
|
| 9 |
model_drive_ids = {
|
|
@@ -21,11 +26,16 @@ os.makedirs(save_dir, exist_ok=True)
|
|
| 21 |
for task, folder_id in model_drive_ids.items():
|
| 22 |
output_dir = os.path.join(save_dir, task)
|
| 23 |
if not os.path.exists(output_dir):
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
|
| 30 |
# Define model paths
|
| 31 |
tasks = ["sentiment", "emotion", "hate_speech", "sarcasm"]
|
|
@@ -39,33 +49,48 @@ label_mappings = {
|
|
| 39 |
"sarcasm": ["no", "yes"]
|
| 40 |
}
|
| 41 |
|
| 42 |
-
# Load tokenizer
|
| 43 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
|
| 45 |
# Load all models
|
| 46 |
models = {}
|
| 47 |
for task in tasks:
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
|
| 52 |
# Function to predict for a single task
|
| 53 |
def predict_task(text, task, model, tokenizer, max_length=128):
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 69 |
|
| 70 |
# Gradio interface function
|
| 71 |
def predict_all_tasks(text):
|
|
@@ -94,4 +119,5 @@ iface = gr.Interface(
|
|
| 94 |
)
|
| 95 |
|
| 96 |
if __name__ == "__main__":
|
|
|
|
| 97 |
iface.launch(server_name="0.0.0.0", server_port=7860)
|
|
|
|
| 4 |
import numpy as np
|
| 5 |
import os
|
| 6 |
import gdown
|
| 7 |
+
import logging
|
| 8 |
+
|
| 9 |
+
# Set up logging
|
| 10 |
+
logging.basicConfig(level=logging.INFO)
|
| 11 |
+
logger = logging.getLogger(__name__)
|
| 12 |
|
| 13 |
# Define Google Drive folder IDs for each model
|
| 14 |
model_drive_ids = {
|
|
|
|
| 26 |
for task, folder_id in model_drive_ids.items():
|
| 27 |
output_dir = os.path.join(save_dir, task)
|
| 28 |
if not os.path.exists(output_dir):
|
| 29 |
+
logger.info(f"Downloading {task} model from Google Drive...")
|
| 30 |
+
try:
|
| 31 |
+
gdown.download_folder(
|
| 32 |
+
f"https://drive.google.com/drive/folders/1kEXKoJxxD5-0FO8WvtagzseSIC5q-rRY?usp=sharing/{folder_id}",
|
| 33 |
+
output=output_dir,
|
| 34 |
+
quiet=False
|
| 35 |
+
)
|
| 36 |
+
except Exception as e:
|
| 37 |
+
logger.error(f"Failed to download {task} model: {str(e)}")
|
| 38 |
+
raise
|
| 39 |
|
| 40 |
# Define model paths
|
| 41 |
tasks = ["sentiment", "emotion", "hate_speech", "sarcasm"]
|
|
|
|
| 49 |
"sarcasm": ["no", "yes"]
|
| 50 |
}
|
| 51 |
|
| 52 |
+
# Load tokenizer with use_fast=False to avoid fast tokenizer issues
|
| 53 |
+
try:
|
| 54 |
+
logger.info("Loading tokenizer...")
|
| 55 |
+
tokenizer = AutoTokenizer.from_pretrained("ai4bharat/indic-bert", use_fast=False)
|
| 56 |
+
except Exception as e:
|
| 57 |
+
logger.error(f"Failed to load tokenizer: {str(e)}")
|
| 58 |
+
raise
|
| 59 |
|
| 60 |
# Load all models
|
| 61 |
models = {}
|
| 62 |
for task in tasks:
|
| 63 |
+
model_path = model_paths[task]
|
| 64 |
+
if not os.path.exists(model_path):
|
| 65 |
+
raise FileNotFoundError(f"Model directory {model_path} not found.")
|
| 66 |
+
try:
|
| 67 |
+
logger.info(f"Loading {task} model...")
|
| 68 |
+
models[task] = AlbertForSequenceClassification.from_pretrained(model_path)
|
| 69 |
+
except Exception as e:
|
| 70 |
+
logger.error(f"Failed to load {task} model: {str(e)}")
|
| 71 |
+
raise
|
| 72 |
|
| 73 |
# Function to predict for a single task
|
| 74 |
def predict_task(text, task, model, tokenizer, max_length=128):
|
| 75 |
+
try:
|
| 76 |
+
inputs = tokenizer(
|
| 77 |
+
text,
|
| 78 |
+
padding=True,
|
| 79 |
+
truncation=True,
|
| 80 |
+
max_length=max_length,
|
| 81 |
+
return_tensors="pt"
|
| 82 |
+
)
|
| 83 |
+
|
| 84 |
+
with torch.no_grad():
|
| 85 |
+
outputs = model(**inputs)
|
| 86 |
+
logits = outputs.logits
|
| 87 |
+
probabilities = torch.softmax(logits, dim=1).squeeze().cpu().numpy()
|
| 88 |
+
|
| 89 |
+
labels = label_mappings[task]
|
| 90 |
+
return {label: f"{prob*100:.2f}%" for label, prob in zip(labels, probabilities)}
|
| 91 |
+
except Exception as e:
|
| 92 |
+
logger.error(f"Error predicting for {task}: {str(e)}")
|
| 93 |
+
return {label: "Error" for label in label_mappings[task]}
|
| 94 |
|
| 95 |
# Gradio interface function
|
| 96 |
def predict_all_tasks(text):
|
|
|
|
| 119 |
)
|
| 120 |
|
| 121 |
if __name__ == "__main__":
|
| 122 |
+
logger.info("Launching Gradio interface...")
|
| 123 |
iface.launch(server_name="0.0.0.0", server_port=7860)
|