Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -3,9 +3,31 @@ import torch
|
|
| 3 |
from transformers import AutoTokenizer, AlbertForSequenceClassification
|
| 4 |
import numpy as np
|
| 5 |
import os
|
|
|
|
| 6 |
|
| 7 |
-
# Define
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
save_dir = "./saved_models"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
tasks = ["sentiment", "emotion", "hate_speech", "sarcasm"]
|
| 10 |
model_paths = {task: f"{save_dir}/{task}" for task in tasks}
|
| 11 |
|
|
@@ -24,7 +46,7 @@ tokenizer = AutoTokenizer.from_pretrained("ai4bharat/indic-bert")
|
|
| 24 |
models = {}
|
| 25 |
for task in tasks:
|
| 26 |
if not os.path.exists(model_paths[task]):
|
| 27 |
-
raise FileNotFoundError(f"Model directory {model_paths[task]} not found.
|
| 28 |
models[task] = AlbertForSequenceClassification.from_pretrained(model_paths[task])
|
| 29 |
|
| 30 |
# Function to predict for a single task
|
|
|
|
| 3 |
from transformers import AutoTokenizer, AlbertForSequenceClassification
|
| 4 |
import numpy as np
|
| 5 |
import os
|
| 6 |
+
import gdown
|
| 7 |
|
| 8 |
+
# Define Google Drive folder IDs for each model
|
| 9 |
+
model_drive_ids = {
|
| 10 |
+
"sentiment": "your_sentiment_folder_id", # Replace with actual folder ID
|
| 11 |
+
"emotion": "your_emotion_folder_id", # Replace with actual folder ID
|
| 12 |
+
"hate_speech": "your_hate_speech_folder_id", # Replace with actual folder ID
|
| 13 |
+
"sarcasm": "your_sarcasm_folder_id" # Replace with actual folder ID
|
| 14 |
+
}
|
| 15 |
+
|
| 16 |
+
# Define local directory to store downloaded models
|
| 17 |
save_dir = "./saved_models"
|
| 18 |
+
os.makedirs(save_dir, exist_ok=True)
|
| 19 |
+
|
| 20 |
+
# Download models from Google Drive
|
| 21 |
+
for task, folder_id in model_drive_ids.items():
|
| 22 |
+
output_dir = os.path.join(save_dir, task)
|
| 23 |
+
if not os.path.exists(output_dir):
|
| 24 |
+
gdown.download_folder(
|
| 25 |
+
f"https://drive.google.com/drive/folders/1kEXKoJxxD5-0FO8WvtagzseSIC5q-rRY?usp=sharing/{folder_id}",
|
| 26 |
+
output=output_dir,
|
| 27 |
+
quiet=False
|
| 28 |
+
)
|
| 29 |
+
|
| 30 |
+
# Define model paths
|
| 31 |
tasks = ["sentiment", "emotion", "hate_speech", "sarcasm"]
|
| 32 |
model_paths = {task: f"{save_dir}/{task}" for task in tasks}
|
| 33 |
|
|
|
|
| 46 |
models = {}
|
| 47 |
for task in tasks:
|
| 48 |
if not os.path.exists(model_paths[task]):
|
| 49 |
+
raise FileNotFoundError(f"Model directory {model_paths[task]} not found.")
|
| 50 |
models[task] = AlbertForSequenceClassification.from_pretrained(model_paths[task])
|
| 51 |
|
| 52 |
# Function to predict for a single task
|