Spaces:
Runtime error
Runtime error
File size: 11,279 Bytes
af11ce4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 |
from typing import List, Tuple
import numpy as np
from pydub import AudioSegment
import os
from chunkformer import ChunkFormerModel
from clearvoice import ClearVoice
# ======================= ASR + CLEARVOICE + AUDIO PROCESSING =======================
ASR_MODEL = None
CLEARVOICE_MODEL = None
REF_AUDIO_CACHE = {} # cache: đường dẫn input -> đường dẫn output đã xử lý
def get_asr_model() -> ChunkFormerModel:
"""Lazy-load ChunkFormer (ASR, chạy trên CPU)."""
global ASR_MODEL
if ASR_MODEL is None:
ASR_MODEL = ChunkFormerModel.from_pretrained("khanhld/chunkformer-ctc-large-vie")
return ASR_MODEL
def get_clearvoice_model() -> ClearVoice:
"""Lazy-load ClearVoice để khử nhiễu ref audio."""
global CLEARVOICE_MODEL
if CLEARVOICE_MODEL is None:
CLEARVOICE_MODEL = ClearVoice(
task="speech_enhancement",
model_names=["MossFormer2_SE_48K"],
)
return CLEARVOICE_MODEL
def find_silent_regions(
audio: AudioSegment,
silence_thresh: float = 0.05, # biên độ sau chuẩn hoá [-1, 1]
chunk_ms: int = 10,
min_silence_len: int = 200,
) -> List[Tuple[int, int]]:
"""
Tìm các khoảng lặng (start_ms, end_ms) trong AudioSegment dựa trên biên độ.
"""
samples = np.array(audio.get_array_of_samples(), dtype=np.float32)
if audio.channels > 1:
samples = samples.reshape((-1, audio.channels)).mean(axis=1)
norm = samples / (2 ** (audio.sample_width * 8 - 1))
sr = audio.frame_rate
chunk_size = max(1, int(sr * chunk_ms / 1000))
total_chunks = len(norm) // chunk_size
silent_regions: List[Tuple[int, int]] = []
start = None
for i in range(total_chunks):
chunk = norm[i * chunk_size: (i + 1) * chunk_size]
if chunk.size == 0:
continue
if np.all((chunk > -silence_thresh) & (chunk < silence_thresh)):
if start is None:
start = i
else:
if start is not None:
dur = (i - start) * chunk_ms
if dur >= min_silence_len:
silent_regions.append((start * chunk_ms, i * chunk_ms))
start = None
if start is not None:
dur = (total_chunks - start) * chunk_ms
if dur >= min_silence_len:
silent_regions.append((start * chunk_ms, total_chunks * chunk_ms))
return silent_regions
def trim_leading_trailing_silence(
audio: AudioSegment,
silence_thresh: float = 0.05,
chunk_ms: int = 10,
min_silence_len: int = 200,
) -> AudioSegment:
"""
Bỏ khoảng lặng đầu/cuối file.
"""
duration = len(audio)
silent_regions = find_silent_regions(
audio,
silence_thresh=silence_thresh,
chunk_ms=chunk_ms,
min_silence_len=min_silence_len,
)
if not silent_regions:
return audio
start_trim = 0
end_trim = duration
# khoảng lặng đầu file
first_start, first_end = silent_regions[0]
if first_start <= 0:
start_trim = max(start_trim, first_end)
# khoảng lặng cuối file
last_start, last_end = silent_regions[-1]
if last_end >= duration:
end_trim = min(end_trim, last_start)
return audio[start_trim:end_trim]
def compress_internal_silence(
audio: AudioSegment,
max_silence_ms: int = 300,
silence_thresh: float = 0.05,
chunk_ms: int = 10,
min_silence_len: int = 50,
) -> AudioSegment:
"""
Rút ngắn khoảng lặng giữa file:
- Khoảng lặng <= max_silence_ms: giữ nguyên
- Khoảng lặng > max_silence_ms: cắt còn max_silence_ms
"""
duration = len(audio)
silent_regions = find_silent_regions(
audio,
silence_thresh=silence_thresh,
chunk_ms=chunk_ms,
min_silence_len=min_silence_len,
)
if not silent_regions:
return audio
new_audio = AudioSegment.silent(duration=0, frame_rate=audio.frame_rate)
cursor = 0
for s_start, s_end in silent_regions:
# phần có tiếng nói trước khoảng lặng
if s_start > cursor:
new_audio += audio[cursor:s_start]
silence_len = s_end - s_start
if silence_len <= max_silence_ms:
new_audio += audio[s_start:s_end]
else:
new_audio += audio[s_start: s_start + max_silence_ms]
cursor = s_end
# phần còn lại sau khoảng lặng cuối
if cursor < duration:
new_audio += audio[cursor:]
return new_audio
def select_subsegment_by_silence(
audio: AudioSegment,
min_len_ms: int = 5000,
max_len_ms: int = 10000,
silence_thresh: float = 0.05,
chunk_ms: int = 10,
min_silence_len: int = 200,
) -> AudioSegment:
"""
Nếu audio > max_len_ms, chọn 1 đoạn dài trong khoảng [min_len_ms, max_len_ms],
cắt tại điểm nằm trong khoảng lặng để tránh cắt dính giọng nói.
"""
duration = len(audio)
if duration <= max_len_ms:
return audio
silent_regions = find_silent_regions(
audio,
silence_thresh=silence_thresh,
chunk_ms=chunk_ms,
min_silence_len=min_silence_len,
)
if not silent_regions:
# không tìm được khoảng lặng -> lấy đoạn giữa
target_len = min(max_len_ms, duration)
start = max(0, (duration - target_len) // 2)
end = start + target_len
return audio[start:end]
# boundary là midpoint của khoảng lặng (chắc chắn nằm trong vùng im lặng)
boundaries = [0]
for s_start, s_end in silent_regions:
mid = (s_start + s_end) // 2
if 0 < mid < duration:
boundaries.append(mid)
boundaries.append(duration)
boundaries = sorted(set(boundaries))
# ưu tiên đoạn đầu tiên thỏa 5–10s
for i in range(len(boundaries)):
for j in range(i + 1, len(boundaries)):
seg_len = boundaries[j] - boundaries[i]
if min_len_ms <= seg_len <= max_len_ms:
return audio[boundaries[i]:boundaries[j]]
# nếu không có đoạn nào nằm trọn trong [min, max], chọn đoạn gần max_len nhất
best_i, best_j, best_diff = 0, None, None
for i in range(len(boundaries)):
for j in range(i + 1, len(boundaries)):
seg_len = boundaries[j] - boundaries[i]
if seg_len >= min_len_ms:
diff = abs(seg_len - max_len_ms)
if best_diff is None or diff < best_diff:
best_diff = diff
best_i, best_j = i, j
if best_j is not None:
return audio[boundaries[best_i]:boundaries[best_j]]
# fallback cuối cùng
target_len = min(max_len_ms, duration)
start = max(0, (duration - target_len) // 2)
end = start + target_len
return audio[start:end]
def enhance_ref_audio(input_path: str) -> str:
"""
Pipeline xử lý WAV cho TTS:
- ClearVoice khử nhiễu
- Bỏ khoảng lặng đầu/cuối
- Rút ngắn khoảng lặng giữa > 0.3s thành 0.3s
- Nếu audio > 10s: chọn 1 đoạn 5–10s, cắt tại khoảng lặng
Trả về đường dẫn file wav đã xử lý.
"""
if not input_path:
raise ValueError("No input audio path for enhancement.")
# cache để cùng 1 file không phải xử lý nhiều lần
if input_path in REF_AUDIO_CACHE:
return REF_AUDIO_CACHE[input_path]
cv = get_clearvoice_model()
# 1) khử nhiễu
try:
cv_out = cv(input_path=input_path, online_write=False)
base = os.path.basename(input_path)
name, ext = os.path.splitext(base)
if not ext:
ext = ".wav"
denoised_path = os.path.join(os.path.dirname(input_path), f"{name}_denoised{ext}")
cv.write(cv_out, output_path=denoised_path)
except Exception as e:
print(f"[ClearVoice] Error during denoising, fallback to original: {e}")
denoised_path = input_path
# 2) pydub xử lý khoảng lặng + length
audio = AudioSegment.from_file(denoised_path)
# bỏ khoảng lặng đầu/cuối
audio = trim_leading_trailing_silence(audio)
# rút ngắn khoảng lặng giữa
audio = compress_internal_silence(audio, max_silence_ms=300)
# nếu >10s thì chọn đoạn trong khoảng 5–10s
audio = select_subsegment_by_silence(audio, min_len_ms=5000, max_len_ms=10000)
# 3) ghi ra file mới
enhanced_path = os.path.join(os.path.dirname(denoised_path), f"{name}_enhanced.wav")
audio.export(enhanced_path, format="wav")
REF_AUDIO_CACHE[input_path] = enhanced_path
return enhanced_path
def split_audio_by_silence(
audio: AudioSegment,
silence_thresh: float = 0.05,
chunk_ms: int = 10,
min_silence_len: int = 200,
min_segment_len: int = 200,
) -> List[Tuple[int, int]]:
"""
Từ AudioSegment, trả về các đoạn có tiếng nói (non-silent)
được tách bằng khoảng lặng.
"""
duration = len(audio)
silent_regions = find_silent_regions(
audio,
silence_thresh=silence_thresh,
chunk_ms=chunk_ms,
min_silence_len=min_silence_len,
)
segments: List[Tuple[int, int]] = []
cur_start = 0
for s_start, s_end in silent_regions:
if cur_start < s_start:
if s_start - cur_start >= min_segment_len:
segments.append((cur_start, s_start))
cur_start = s_end
if cur_start < duration and duration - cur_start >= min_segment_len:
segments.append((cur_start, duration))
# nếu không tìm được đoạn nào, lấy cả file
if not segments:
segments.append((0, duration))
return segments
def transcribe_ref_audio(audio_path: str) -> str:
"""
ASR theo yêu cầu:
- Cắt âm thanh theo khoảng lặng
- ASR từng đoạn
- Nối text bằng dấu phẩy
"""
if not audio_path:
raise ValueError("No audio path for ASR.")
model = get_asr_model()
audio = AudioSegment.from_file(audio_path)
segments = split_audio_by_silence(audio)
texts = []
base, _ = os.path.splitext(audio_path)
for idx, (start_ms, end_ms) in enumerate(segments):
seg_audio = audio[start_ms:end_ms]
seg_path = f"{base}_seg_{idx}.wav"
seg_audio.export(seg_path, format="wav")
try:
transcription = model.endless_decode(
audio_path=seg_path,
chunk_size=32,
left_context_size=0,
right_context_size=0,
total_batch_duration=400,
return_timestamps=False,
)
except TypeError:
transcription = model.endless_decode(
audio_path=seg_path,
chunk_size=32,
left_context_size=0,
right_context_size=0,
total_batch_duration=400,
)
if isinstance(transcription, str):
text = transcription
else:
text = str(transcription)
text = text.strip()
if text:
texts.append(text)
return ", ".join(texts)
|