File size: 11,279 Bytes
af11ce4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
from typing import List, Tuple
import numpy as np
from pydub import AudioSegment
import os
from chunkformer import ChunkFormerModel
from clearvoice import ClearVoice
# ======================= ASR + CLEARVOICE + AUDIO PROCESSING =======================

ASR_MODEL = None
CLEARVOICE_MODEL = None
REF_AUDIO_CACHE = {}  # cache: đường dẫn input -> đường dẫn output đã xử lý


def get_asr_model() -> ChunkFormerModel:
    """Lazy-load ChunkFormer (ASR, chạy trên CPU)."""
    global ASR_MODEL
    if ASR_MODEL is None:
        ASR_MODEL = ChunkFormerModel.from_pretrained("khanhld/chunkformer-ctc-large-vie")
    return ASR_MODEL


def get_clearvoice_model() -> ClearVoice:
    """Lazy-load ClearVoice để khử nhiễu ref audio."""
    global CLEARVOICE_MODEL
    if CLEARVOICE_MODEL is None:
        CLEARVOICE_MODEL = ClearVoice(
            task="speech_enhancement",
            model_names=["MossFormer2_SE_48K"],
        )
    return CLEARVOICE_MODEL


def find_silent_regions(
    audio: AudioSegment,
    silence_thresh: float = 0.05,  # biên độ sau chuẩn hoá [-1, 1]
    chunk_ms: int = 10,
    min_silence_len: int = 200,
) -> List[Tuple[int, int]]:
    """
    Tìm các khoảng lặng (start_ms, end_ms) trong AudioSegment dựa trên biên độ.
    """
    samples = np.array(audio.get_array_of_samples(), dtype=np.float32)
    if audio.channels > 1:
        samples = samples.reshape((-1, audio.channels)).mean(axis=1)

    norm = samples / (2 ** (audio.sample_width * 8 - 1))
    sr = audio.frame_rate

    chunk_size = max(1, int(sr * chunk_ms / 1000))
    total_chunks = len(norm) // chunk_size

    silent_regions: List[Tuple[int, int]] = []
    start = None
    for i in range(total_chunks):
        chunk = norm[i * chunk_size: (i + 1) * chunk_size]
        if chunk.size == 0:
            continue

        if np.all((chunk > -silence_thresh) & (chunk < silence_thresh)):
            if start is None:
                start = i
        else:
            if start is not None:
                dur = (i - start) * chunk_ms
                if dur >= min_silence_len:
                    silent_regions.append((start * chunk_ms, i * chunk_ms))
                start = None

    if start is not None:
        dur = (total_chunks - start) * chunk_ms
        if dur >= min_silence_len:
            silent_regions.append((start * chunk_ms, total_chunks * chunk_ms))

    return silent_regions


def trim_leading_trailing_silence(
    audio: AudioSegment,
    silence_thresh: float = 0.05,
    chunk_ms: int = 10,
    min_silence_len: int = 200,
) -> AudioSegment:
    """
    Bỏ khoảng lặng đầu/cuối file.
    """
    duration = len(audio)
    silent_regions = find_silent_regions(
        audio,
        silence_thresh=silence_thresh,
        chunk_ms=chunk_ms,
        min_silence_len=min_silence_len,
    )

    if not silent_regions:
        return audio

    start_trim = 0
    end_trim = duration

    # khoảng lặng đầu file
    first_start, first_end = silent_regions[0]
    if first_start <= 0:
        start_trim = max(start_trim, first_end)

    # khoảng lặng cuối file
    last_start, last_end = silent_regions[-1]
    if last_end >= duration:
        end_trim = min(end_trim, last_start)

    return audio[start_trim:end_trim]


def compress_internal_silence(
    audio: AudioSegment,
    max_silence_ms: int = 300,
    silence_thresh: float = 0.05,
    chunk_ms: int = 10,
    min_silence_len: int = 50,
) -> AudioSegment:
    """
    Rút ngắn khoảng lặng giữa file:
    - Khoảng lặng <= max_silence_ms: giữ nguyên
    - Khoảng lặng > max_silence_ms: cắt còn max_silence_ms
    """
    duration = len(audio)
    silent_regions = find_silent_regions(
        audio,
        silence_thresh=silence_thresh,
        chunk_ms=chunk_ms,
        min_silence_len=min_silence_len,
    )
    if not silent_regions:
        return audio

    new_audio = AudioSegment.silent(duration=0, frame_rate=audio.frame_rate)
    cursor = 0

    for s_start, s_end in silent_regions:
        # phần có tiếng nói trước khoảng lặng
        if s_start > cursor:
            new_audio += audio[cursor:s_start]

        silence_len = s_end - s_start
        if silence_len <= max_silence_ms:
            new_audio += audio[s_start:s_end]
        else:
            new_audio += audio[s_start: s_start + max_silence_ms]

        cursor = s_end

    # phần còn lại sau khoảng lặng cuối
    if cursor < duration:
        new_audio += audio[cursor:]

    return new_audio


def select_subsegment_by_silence(
    audio: AudioSegment,
    min_len_ms: int = 5000,
    max_len_ms: int = 10000,
    silence_thresh: float = 0.05,
    chunk_ms: int = 10,
    min_silence_len: int = 200,
) -> AudioSegment:
    """
    Nếu audio > max_len_ms, chọn 1 đoạn dài trong khoảng [min_len_ms, max_len_ms],
    cắt tại điểm nằm trong khoảng lặng để tránh cắt dính giọng nói.
    """
    duration = len(audio)
    if duration <= max_len_ms:
        return audio

    silent_regions = find_silent_regions(
        audio,
        silence_thresh=silence_thresh,
        chunk_ms=chunk_ms,
        min_silence_len=min_silence_len,
    )

    if not silent_regions:
        # không tìm được khoảng lặng -> lấy đoạn giữa
        target_len = min(max_len_ms, duration)
        start = max(0, (duration - target_len) // 2)
        end = start + target_len
        return audio[start:end]

    # boundary là midpoint của khoảng lặng (chắc chắn nằm trong vùng im lặng)
    boundaries = [0]
    for s_start, s_end in silent_regions:
        mid = (s_start + s_end) // 2
        if 0 < mid < duration:
            boundaries.append(mid)
    boundaries.append(duration)
    boundaries = sorted(set(boundaries))

    # ưu tiên đoạn đầu tiên thỏa 5–10s
    for i in range(len(boundaries)):
        for j in range(i + 1, len(boundaries)):
            seg_len = boundaries[j] - boundaries[i]
            if min_len_ms <= seg_len <= max_len_ms:
                return audio[boundaries[i]:boundaries[j]]

    # nếu không có đoạn nào nằm trọn trong [min, max], chọn đoạn gần max_len nhất
    best_i, best_j, best_diff = 0, None, None
    for i in range(len(boundaries)):
        for j in range(i + 1, len(boundaries)):
            seg_len = boundaries[j] - boundaries[i]
            if seg_len >= min_len_ms:
                diff = abs(seg_len - max_len_ms)
                if best_diff is None or diff < best_diff:
                    best_diff = diff
                    best_i, best_j = i, j

    if best_j is not None:
        return audio[boundaries[best_i]:boundaries[best_j]]

    # fallback cuối cùng
    target_len = min(max_len_ms, duration)
    start = max(0, (duration - target_len) // 2)
    end = start + target_len
    return audio[start:end]


def enhance_ref_audio(input_path: str) -> str:
    """
    Pipeline xử lý WAV cho TTS:
    - ClearVoice khử nhiễu
    - Bỏ khoảng lặng đầu/cuối
    - Rút ngắn khoảng lặng giữa > 0.3s thành 0.3s
    - Nếu audio > 10s: chọn 1 đoạn 5–10s, cắt tại khoảng lặng
    Trả về đường dẫn file wav đã xử lý.
    """
    if not input_path:
        raise ValueError("No input audio path for enhancement.")

    # cache để cùng 1 file không phải xử lý nhiều lần
    if input_path in REF_AUDIO_CACHE:
        return REF_AUDIO_CACHE[input_path]

    cv = get_clearvoice_model()

    # 1) khử nhiễu
    try:
        cv_out = cv(input_path=input_path, online_write=False)
        base = os.path.basename(input_path)
        name, ext = os.path.splitext(base)
        if not ext:
            ext = ".wav"
        denoised_path = os.path.join(os.path.dirname(input_path), f"{name}_denoised{ext}")
        cv.write(cv_out, output_path=denoised_path)
    except Exception as e:
        print(f"[ClearVoice] Error during denoising, fallback to original: {e}")
        denoised_path = input_path

    # 2) pydub xử lý khoảng lặng + length
    audio = AudioSegment.from_file(denoised_path)

    # bỏ khoảng lặng đầu/cuối
    audio = trim_leading_trailing_silence(audio)

    # rút ngắn khoảng lặng giữa
    audio = compress_internal_silence(audio, max_silence_ms=300)

    # nếu >10s thì chọn đoạn trong khoảng 5–10s
    audio = select_subsegment_by_silence(audio, min_len_ms=5000, max_len_ms=10000)

    # 3) ghi ra file mới
    enhanced_path = os.path.join(os.path.dirname(denoised_path), f"{name}_enhanced.wav")
    audio.export(enhanced_path, format="wav")

    REF_AUDIO_CACHE[input_path] = enhanced_path
    return enhanced_path

def split_audio_by_silence(
    audio: AudioSegment,
    silence_thresh: float = 0.05,
    chunk_ms: int = 10,
    min_silence_len: int = 200,
    min_segment_len: int = 200,
) -> List[Tuple[int, int]]:
    """
    Từ AudioSegment, trả về các đoạn có tiếng nói (non-silent)
    được tách bằng khoảng lặng.
    """
    duration = len(audio)
    silent_regions = find_silent_regions(
        audio,
        silence_thresh=silence_thresh,
        chunk_ms=chunk_ms,
        min_silence_len=min_silence_len,
    )

    segments: List[Tuple[int, int]] = []
    cur_start = 0

    for s_start, s_end in silent_regions:
        if cur_start < s_start:
            if s_start - cur_start >= min_segment_len:
                segments.append((cur_start, s_start))
        cur_start = s_end

    if cur_start < duration and duration - cur_start >= min_segment_len:
        segments.append((cur_start, duration))

    # nếu không tìm được đoạn nào, lấy cả file
    if not segments:
        segments.append((0, duration))

    return segments


def transcribe_ref_audio(audio_path: str) -> str:
    """
    ASR theo yêu cầu:
    - Cắt âm thanh theo khoảng lặng
    - ASR từng đoạn
    - Nối text bằng dấu phẩy
    """
    if not audio_path:
        raise ValueError("No audio path for ASR.")

    model = get_asr_model()
    audio = AudioSegment.from_file(audio_path)
    segments = split_audio_by_silence(audio)

    texts = []
    base, _ = os.path.splitext(audio_path)

    for idx, (start_ms, end_ms) in enumerate(segments):
        seg_audio = audio[start_ms:end_ms]
        seg_path = f"{base}_seg_{idx}.wav"
        seg_audio.export(seg_path, format="wav")

        try:
            transcription = model.endless_decode(
                audio_path=seg_path,
                chunk_size=32,
                left_context_size=0,
                right_context_size=0,
                total_batch_duration=400,
                return_timestamps=False,
            )
        except TypeError:
            transcription = model.endless_decode(
                audio_path=seg_path,
                chunk_size=32,
                left_context_size=0,
                right_context_size=0,
                total_batch_duration=400,
            )

        if isinstance(transcription, str):
            text = transcription
        else:
            text = str(transcription)

        text = text.strip()
        if text:
            texts.append(text)

    return ", ".join(texts)