Spaces:
Running
Running
| from typing import * | |
| import gradio as gr | |
| from predict import predict_fn | |
| from utils import populate_examples | |
| description = """ | |
| Anomaly detection models are trained with only <span style="color:lime;font-weight:bold">normal</span> images, | |
| and aimed to segment <span style="color:red;font-weight:bold">anomalies (deviations)</span> in input images. | |
| Scroll to bottom of this demo for a list of pretrained examples. | |
| """ | |
| def launch(): | |
| input_image = gr.Image(label="Input image") | |
| threshold = gr.Slider(value=1, step=0.1, label="Threshold") | |
| devices = gr.Radio( | |
| label="Device", | |
| choices=["AUTO", "CPU", "GPU"], | |
| value="CPU", | |
| interactive=False | |
| ) | |
| model = gr.Text(label="Model", interactive=False) | |
| output_image = gr.Image(label="Output image") | |
| output_heatmap = gr.Image(label="Heatmap") | |
| intf = gr.Interface( | |
| title="Anomaly Detection", | |
| description=description, | |
| fn=predict_fn, | |
| inputs=[input_image, threshold, devices, model], | |
| outputs=[output_image, output_heatmap], | |
| examples=populate_examples(), | |
| allow_flagging="never" | |
| ) | |
| intf.launch() | |
| if __name__ == "__main__": | |
| launch() |