kawre commited on
Commit
3dbcf4a
·
verified ·
1 Parent(s): 3689306

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +13 -9
app.py CHANGED
@@ -13,28 +13,32 @@ client_aux2 = InferenceClient(token=HF_TOKEN, model="facebook/bart-large-cnn")
13
  # Função principal de resposta
14
  def respond(message, history, system_message, max_tokens, temperature, top_p):
15
  try:
16
- # --- Passo 1: Llama 3.1 (chat) ---
17
- chat_messages = [{"role": "system", "content": system_message}]
 
 
 
 
18
  for h in history:
19
- chat_messages.append({"role": h['role'], "content": h['content']})
20
- chat_messages.append({"role": "user", "content": message})
21
 
22
- result_main = client_main.chat(
23
- messages=chat_messages,
24
  max_new_tokens=max_tokens,
25
  temperature=temperature,
26
  top_p=top_p
27
  )
28
- response_main = result_main.choices[0].message["content"]
29
 
30
- # --- Passo 2: FLAN-T5 (reformula o texto) ---
31
  result_aux1 = client_aux1.text_generation(
32
  prompt=f"Reformule este texto de forma clara e concisa:\n{response_main}",
33
  max_new_tokens=max_tokens
34
  )
35
  response_aux1 = result_aux1.generated_text
36
 
37
- # --- Passo 3: BART (resuma em 3 frases) ---
38
  result_aux2 = client_aux2.text_generation(
39
  prompt=f"Resuma este texto em 3 frases:\n{response_aux1}",
40
  max_new_tokens=150
 
13
  # Função principal de resposta
14
  def respond(message, history, system_message, max_tokens, temperature, top_p):
15
  try:
16
+ # --- Passo 1: Llama 3.1 via ProxyClientChat ---
17
+ chat = client_main.chat # objeto de chat, não chamável
18
+ chat.clear_messages() # limpa mensagens anteriores do objeto (opcional)
19
+
20
+ # Adiciona mensagens do histórico
21
+ chat.add_message("system", system_message)
22
  for h in history:
23
+ chat.add_message(h['role'], h['content'])
24
+ chat.add_message("user", message)
25
 
26
+ # Gera resposta
27
+ response_main_obj = chat.send_message(
28
  max_new_tokens=max_tokens,
29
  temperature=temperature,
30
  top_p=top_p
31
  )
32
+ response_main = response_main_obj.content # pega o texto gerado
33
 
34
+ # --- Passo 2: FLAN-T5 (reformulação) ---
35
  result_aux1 = client_aux1.text_generation(
36
  prompt=f"Reformule este texto de forma clara e concisa:\n{response_main}",
37
  max_new_tokens=max_tokens
38
  )
39
  response_aux1 = result_aux1.generated_text
40
 
41
+ # --- Passo 3: BART (resumo em 3 frases) ---
42
  result_aux2 = client_aux2.text_generation(
43
  prompt=f"Resuma este texto em 3 frases:\n{response_aux1}",
44
  max_new_tokens=150