try: import spaces GPU = spaces.GPU print("spaces GPU is available") except ImportError: def GPU(duration=15): def decorator(func): return func return decorator print("spaces GPU is NOT available, using fallback decorator") import os import torch import numpy as np import imageio import json import time from PIL import Image import gradio as gr from huggingface_hub import hf_hub_download import einops import torch.nn as nn import torch.nn.functional as F from models import * from utils import * from transformers import T5TokenizerFast, UMT5EncoderModel from diffusers import FlowMatchEulerDiscreteScheduler class MyFlowMatchEulerDiscreteScheduler(FlowMatchEulerDiscreteScheduler): def index_for_timestep(self, timestep, schedule_timesteps=None): if schedule_timesteps is None: schedule_timesteps = self.timesteps return torch.argmin( (timestep - schedule_timesteps.to(timestep.device)).abs(), dim=0).item() class GenerationSystem(nn.Module): def __init__(self, ckpt_path=None, device="cuda:0", offload_t5=False, offload_vae=False): super().__init__() self.device = device self.offload_t5 = offload_t5 self.offload_vae = offload_vae self.latent_dim = 48 self.temporal_downsample_factor = 4 self.spatial_downsample_factor = 16 self.feat_dim = 1024 self.latent_patch_size = 2 self.denoising_steps = [0, 250, 500, 750] model_id = "Wan-AI/Wan2.2-TI2V-5B-Diffusers" self.vae = AutoencoderKLWan.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float).eval() from models.autoencoder_kl_wan import WanCausalConv3d with torch.no_grad(): for name, module in self.vae.named_modules(): if isinstance(module, WanCausalConv3d): time_pad = module._padding[4] module.padding = (0, module._padding[2], module._padding[0]) module._padding = (0, 0, 0, 0, 0, 0) module.weight = torch.nn.Parameter(module.weight[:, :, time_pad:].clone()) self.vae.requires_grad_(False) self.register_buffer('latents_mean', torch.tensor(self.vae.config.latents_mean).float().view(1, self.vae.config.z_dim, 1, 1, 1).to(self.device)) self.register_buffer('latents_std', torch.tensor(self.vae.config.latents_std).float().view(1, self.vae.config.z_dim, 1, 1, 1).to(self.device)) self.latent_scale_fn = lambda x: (x - self.latents_mean) / self.latents_std self.latent_unscale_fn = lambda x: x * self.latents_std + self.latents_mean self.tokenizer = T5TokenizerFast.from_pretrained(model_id, subfolder="tokenizer") self.text_encoder = UMT5EncoderModel.from_pretrained(model_id, subfolder="text_encoder", torch_dtype=torch.float32).eval().requires_grad_(False).to(self.device if not self.offload_t5 else "cpu") self.transformer = WanTransformer3DModel.from_pretrained(model_id, subfolder="transformer", torch_dtype=torch.float32).train().requires_grad_(False) self.transformer.patch_embedding.weight = nn.Parameter(F.pad(self.transformer.patch_embedding.weight, (0, 0, 0, 0, 0, 0, 0, 6 + self.latent_dim))) weight = self.transformer.proj_out.weight.reshape(self.latent_patch_size ** 2, self.latent_dim, self.transformer.proj_out.weight.shape[1]) bias = self.transformer.proj_out.bias.reshape(self.latent_patch_size ** 2, self.latent_dim) extra_weight = torch.randn(self.latent_patch_size ** 2, self.feat_dim, self.transformer.proj_out.weight.shape[1]) * 0.02 extra_bias = torch.zeros(self.latent_patch_size ** 2, self.feat_dim) self.transformer.proj_out.weight = nn.Parameter(torch.cat([weight, extra_weight], dim=1).flatten(0, 1).detach().clone()) self.transformer.proj_out.bias = nn.Parameter(torch.cat([bias, extra_bias], dim=1).flatten(0, 1).detach().clone()) self.recon_decoder = WANDecoderPixelAligned3DGSReconstructionModel(self.vae, self.feat_dim, use_render_checkpointing=True, use_network_checkpointing=False).train().requires_grad_(False).to(self.device) self.scheduler = MyFlowMatchEulerDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler", shift=3) self.register_buffer('timesteps', self.scheduler.timesteps.clone().to(self.device)) self.transformer.disable_gradient_checkpointing() self.transformer.gradient_checkpointing = False self.add_feedback_for_transformer() if ckpt_path is not None: state_dict = torch.load(ckpt_path, map_location="cpu", weights_only=False) self.transformer.load_state_dict(state_dict["transformer"]) self.recon_decoder.load_state_dict(state_dict["recon_decoder"]) print(f"Loaded {ckpt_path}.") from quant import FluxFp8GeMMProcessor FluxFp8GeMMProcessor(self.transformer) del self.vae.post_quant_conv, self.vae.decoder self.vae.to(self.device if not self.offload_vae else "cpu") self.transformer.to(self.device) def add_feedback_for_transformer(self): self.use_feedback = True self.transformer.patch_embedding.weight = nn.Parameter(F.pad(self.transformer.patch_embedding.weight, (0, 0, 0, 0, 0, 0, 0, self.feat_dim + self.latent_dim))) def encode_text(self, texts): max_sequence_length = 512 text_inputs = self.tokenizer( texts, padding="max_length", max_length=max_sequence_length, truncation=True, add_special_tokens=True, return_attention_mask=True, return_tensors="pt", ) if getattr(self, "offload_t5", False): text_input_ids = text_inputs.input_ids.to("cpu") mask = text_inputs.attention_mask.to("cpu") else: text_input_ids = text_inputs.input_ids.to(self.device) mask = text_inputs.attention_mask.to(self.device) seq_lens = mask.gt(0).sum(dim=1).long() if getattr(self, "offload_t5", False): with torch.no_grad(): text_embeds = self.text_encoder(text_input_ids, mask).last_hidden_state.to(self.device) else: text_embeds = self.text_encoder(text_input_ids, mask).last_hidden_state text_embeds = [u[:v] for u, v in zip(text_embeds, seq_lens)] text_embeds = torch.stack( [torch.cat([u, u.new_zeros(max_sequence_length - u.size(0), u.size(1))]) for u in text_embeds], dim=0 ) return text_embeds.float() def forward_generator(self, noisy_latents, raymaps, condition_latents, t, text_embeds, cameras, render_cameras, image_height, image_width, need_3d_mode=True): out = self.transformer( hidden_states=torch.cat([noisy_latents, raymaps, condition_latents], dim=1), timestep=t, encoder_hidden_states=text_embeds, return_dict=False, )[0] v_pred, feats = out.split([self.latent_dim, self.feat_dim], dim=1) sigma = torch.stack([self.scheduler.sigmas[self.scheduler.index_for_timestep(_t)] for _t in t.unbind(0)], dim=0).to(self.device) latents_pred_2d = noisy_latents - sigma * v_pred if need_3d_mode: scene_params = self.recon_decoder( einops.rearrange(feats, 'B C T H W -> (B T) C H W').unsqueeze(2), einops.rearrange(self.latent_unscale_fn(latents_pred_2d.detach()), 'B C T H W -> (B T) C H W').unsqueeze(2), cameras ).flatten(1, -2) images_pred, _ = self.recon_decoder.render(scene_params.unbind(0), render_cameras, image_height, image_width, bg_mode="white") latents_pred_3d = einops.rearrange(self.latent_scale_fn(self.vae.encode( einops.rearrange(images_pred, 'B T C H W -> (B T) C H W', T=images_pred.shape[1]).unsqueeze(2).to(self.device if not self.offload_vae else "cpu").float() ).latent_dist.sample().to(self.device)).squeeze(2), '(B T) C H W -> B C T H W', T=images_pred.shape[1]).to(noisy_latents.dtype) return { '2d': latents_pred_2d, '3d': latents_pred_3d if need_3d_mode else None, 'rgb_3d': images_pred if need_3d_mode else None, 'scene': scene_params if need_3d_mode else None, 'feat': feats } @torch.no_grad() @torch.amp.autocast(dtype=torch.bfloat16, device_type="cuda") def generate(self, cameras, n_frame, image=None, text="", image_index=0, image_height=480, image_width=704, video_output_path=None): with torch.no_grad(): batch_size = 1 cameras = cameras.to(self.device).unsqueeze(0) if cameras.shape[1] != n_frame: render_cameras = cameras.clone() cameras = sample_from_dense_cameras(cameras.squeeze(0), torch.linspace(0, 1, n_frame, device=self.device)).unsqueeze(0) else: render_cameras = cameras cameras, ref_w2c, T_norm = normalize_cameras(cameras, return_meta=True, n_frame=None) render_cameras = normalize_cameras(render_cameras, ref_w2c=ref_w2c, T_norm=T_norm, n_frame=None) text = "[Static] " + text text_embeds = self.encode_text([text]) masks = torch.zeros(batch_size, n_frame, device=self.device) condition_latents = torch.zeros(batch_size, self.latent_dim, n_frame, image_height // self.spatial_downsample_factor, image_width // self.spatial_downsample_factor, device=self.device) if image is not None: image = image.to(self.device) latent = self.latent_scale_fn(self.vae.encode( image.unsqueeze(0).unsqueeze(2).to(self.device if not self.offload_vae else "cpu").float() ).latent_dist.sample().to(self.device)).squeeze(2) masks[:, image_index] = 1 condition_latents[:, :, image_index] = latent raymaps = create_raymaps(cameras, image_height // self.spatial_downsample_factor, image_width // self.spatial_downsample_factor) raymaps = einops.rearrange(raymaps, 'B T H W C -> B C T H W', T=n_frame) noise = torch.randn(batch_size, self.latent_dim, n_frame, image_height // self.spatial_downsample_factor, image_width // self.spatial_downsample_factor, device=self.device) noisy_latents = noise torch.cuda.empty_cache() if self.use_feedback: prev_latents_pred = torch.zeros(batch_size, self.latent_dim, n_frame, image_height // self.spatial_downsample_factor, image_width // self.spatial_downsample_factor, device=self.device) prev_feats = torch.zeros(batch_size, self.feat_dim, n_frame, image_height // self.spatial_downsample_factor, image_width // self.spatial_downsample_factor, device=self.device) for i in range(len(self.denoising_steps)): t_ids = torch.full((noisy_latents.shape[0],), self.denoising_steps[i], device=self.device) t = self.timesteps[t_ids] if self.use_feedback: _condition_latents = torch.cat([condition_latents, prev_feats, prev_latents_pred], dim=1) else: _condition_latents = condition_latents if i < len(self.denoising_steps) - 1: out = self.forward_generator(noisy_latents, raymaps, _condition_latents, t, text_embeds, cameras, cameras, image_height, image_width, need_3d_mode=True) latents_pred = out["3d"] if self.use_feedback: prev_latents_pred = latents_pred prev_feats = out['feat'] noisy_latents = self.scheduler.scale_noise(latents_pred, self.timesteps[torch.full((noisy_latents.shape[0],), self.denoising_steps[i + 1], device=self.device)], torch.randn_like(noise)) else: out = self.transformer( hidden_states=torch.cat([noisy_latents, raymaps, _condition_latents], dim=1), timestep=t, encoder_hidden_states=text_embeds, return_dict=False, )[0] v_pred, feats = out.split([self.latent_dim, self.feat_dim], dim=1) sigma = torch.stack([self.scheduler.sigmas[self.scheduler.index_for_timestep(_t)] for _t in t.unbind(0)], dim=0).to(self.device) latents_pred = noisy_latents - sigma * v_pred scene_params = self.recon_decoder( einops.rearrange(feats, 'B C T H W -> (B T) C H W').unsqueeze(2), einops.rearrange(self.latent_unscale_fn(latents_pred.detach()), 'B C T H W -> (B T) C H W').unsqueeze(2), cameras ).flatten(1, -2) if video_output_path is not None: interpolated_images_pred, _ = self.recon_decoder.render(scene_params.unbind(0), render_cameras, image_height, image_width, bg_mode="white") interpolated_images_pred = einops.rearrange(interpolated_images_pred[0].clamp(-1, 1).add(1).div(2), 'T C H W -> T H W C') interpolated_images_pred = [torch.cat([img], dim=1).detach().cpu().mul(255).numpy().astype(np.uint8) for i, img in enumerate(interpolated_images_pred.unbind(0))] imageio.mimwrite(video_output_path, interpolated_images_pred, fps=15, quality=8, macro_block_size=1) scene_params = scene_params[0] scene_params = scene_params.detach().cpu() return scene_params, ref_w2c, T_norm # Initialize the model globally (outside GPU decorator) print("Initializing model...") import argparse parser = argparse.ArgumentParser() parser.add_argument("--ckpt", default=None) parser.add_argument("--gpu", type=int, default=0) parser.add_argument("--offload_t5", action="store_true", help="Offload T5 encoder to CPU to save GPU memory") args, _ = parser.parse_known_args() # Ensure model.ckpt exists, download if not present if args.ckpt is None: from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE ckpt_path = os.path.join(HUGGINGFACE_HUB_CACHE, "models--imlixinyang--FlashWorld", "snapshots", "6a8e88c6f88678ac098e4c82675f0aee555d6e5d", "model.ckpt") if not os.path.exists(ckpt_path): print("Downloading model checkpoint...") hf_hub_download(repo_id="imlixinyang/FlashWorld", filename="model.ckpt", local_dir_use_symlinks=False) else: ckpt_path = args.ckpt device = f"cuda:{args.gpu}" if torch.cuda.is_available() else "cpu" print(f"Loading model on device: {device}") generation_system = GenerationSystem(ckpt_path=ckpt_path, device=device, offload_t5=args.offload_t5) print("Model loaded successfully!") # GPU-decorated generation function with 120-second budget # (yes, it should be shorted.. idk why it is slow, maybe we are missing some optimizations in the dependencies, or the attention mechanism) @GPU(duration=120) def generate_scene( image_prompt, text_prompt, camera_json, resolution, progress=gr.Progress() ): """ Generate 3D scene from image/text prompts and camera trajectory. Args: image_prompt: PIL Image or None text_prompt: str camera_json: JSON string with camera trajectory resolution: str in format "NxHxW" """ try: progress(0, desc="Parsing inputs...") # Parse resolution n_frame, image_height, image_width = [int(x) for x in resolution.split('x')] # Parse camera JSON try: camera_data = json.loads(camera_json) if "cameras" not in camera_data or len(camera_data["cameras"]) == 0: return None, "Error: No cameras found in JSON" except json.JSONDecodeError as e: return None, f"Error: Invalid JSON format: {str(e)}" progress(0.1, desc="Processing camera trajectory...") # Convert cameras to tensor cameras = [] for cam in camera_data["cameras"]: quat = cam["quaternion"] # [w, x, y, z] pos = cam["position"] # [x, y, z] fx = cam.get("fx", 0.5 / np.tan(0.5 * 60 * np.pi / 180) * image_height) fy = cam.get("fy", 0.5 / np.tan(0.5 * 60 * np.pi / 180) * image_height) cx = cam.get("cx", 0.5 * image_width) cy = cam.get("cy", 0.5 * image_height) camera_tensor = np.array([ quat[0], quat[1], quat[2], quat[3], # quaternion pos[0], pos[1], pos[2], # position fx / image_width, fy / image_height, # normalized focal lengths cx / image_width, cy / image_height # normalized principal point ], dtype=np.float32) cameras.append(camera_tensor) cameras = torch.from_numpy(np.stack(cameras, axis=0)) # Process image prompt image = None if image_prompt is not None: progress(0.2, desc="Processing image prompt...") # Convert PIL to tensor and resize img = image_prompt.convert('RGB') w, h = img.size # Center crop if image_height / h > image_width / w: scale = image_height / h else: scale = image_width / w new_h = int(image_height / scale) new_w = int(image_width / scale) img = img.crop(( (w - new_w) // 2, (h - new_h) // 2, new_w + (w - new_w) // 2, new_h + (h - new_h) // 2 )).resize((image_width, image_height)) image = torch.from_numpy(np.array(img)).float().permute(2, 0, 1) / 255.0 * 2 - 1 progress(0.3, desc="Generating 3D scene (this takes ~7 seconds)...") # Generate scene output_path = f"/tmp/flashworld_output_{int(time.time())}.mp4" scene_params, ref_w2c, T_norm = generation_system.generate( cameras=cameras, n_frame=n_frame, image=image, text=text_prompt, image_index=0, image_height=image_height, image_width=image_width, video_output_path=output_path ) progress(0.9, desc="Exporting result...") # Export to PLY ply_path = f"/tmp/flashworld_output_{int(time.time())}.ply" export_ply_for_gaussians(ply_path, scene_params, opacity_threshold=0.001, T_norm=T_norm) progress(1.0, desc="Done!") return ply_path, f"Generation successful! Scene contains {scene_params.shape[0]} Gaussians." except Exception as e: import traceback error_msg = f"Error during generation: {str(e)}\n{traceback.format_exc()}" print(error_msg) return None, error_msg # Create Gradio interface def create_demo(): with gr.Blocks(title="FlashWorld: Fast 3D Scene Generation") as demo: gr.Markdown(""" # FlashWorld: High-quality 3D Scene Generation within Seconds Generate 3D scenes in ~7 seconds from text or image prompts with camera trajectory! **Note:** This demo uses ZeroGPU with a 15-second budget. Please ensure your camera trajectory is reasonable. """) with gr.Row(): with gr.Column(): # Input controls gr.Markdown("### 1. Prompts") image_input = gr.Image(label="Image Prompt (Optional)", type="pil") text_input = gr.Textbox( label="Text Prompt", placeholder="A beautiful mountain landscape with trees...", value="" ) gr.Markdown("### 2. Camera Trajectory") camera_json_input = gr.Code( label="Camera JSON", language="json", value="""{ "cameras": [ { "quaternion": [1, 0, 0, 0], "position": [0, 0, 0], "fx": 352.0, "fy": 352.0, "cx": 352.0, "cy": 240.0 }, { "quaternion": [1, 0, 0, 0], "position": [0, 0, -0.5], "fx": 352.0, "fy": 352.0, "cx": 352.0, "cy": 240.0 } ] }""", lines=15 ) gr.Markdown("### 3. Resolution") resolution_input = gr.Dropdown( label="Resolution (NxHxW)", choices=["24x480x704", "24x704x480"], value="24x480x704" ) generate_btn = gr.Button("Generate 3D Scene", variant="primary", size="lg") with gr.Column(): # Output gr.Markdown("### Output") output_file = gr.File(label="Download PLY File") output_message = gr.Textbox(label="Status", lines=3) gr.Markdown(""" ### Instructions: 1. **Optional:** Upload an image prompt 2. **Optional:** Enter a text description 3. **Required:** Provide camera trajectory as JSON 4. Select resolution (24 frames recommended) 5. Click "Generate 3D Scene" The camera JSON should contain an array of cameras with: - `quaternion`: [w, x, y, z] rotation - `position`: [x, y, z] translation - `fx`, `fy`: focal lengths (pixels) - `cx`, `cy`: principal point (pixels) **Tips:** - Generation takes ~7 seconds on GPU - Download the PLY file to view in 3D viewers - Use reasonable camera trajectories (not too many frames) """) # Connect the button generate_btn.click( fn=generate_scene, inputs=[image_input, text_input, camera_json_input, resolution_input], outputs=[output_file, output_message] ) return demo if __name__ == "__main__": demo = create_demo() demo.launch(server_name="0.0.0.0", server_port=7860, share=False)