import os import random from typing import Optional import gradio as gr import numpy as np import PIL.Image import spaces import torch from diffusers import (AutoencoderKL, DDIMInverseScheduler, DDIMScheduler, StableDiffusionXLPipeline) from torchvision.transforms import ToTensor # pyright: reportPrivateImportUsage=false DESCRIPTION = f""" # 🎨 Noisy-Style 🎨 This is an interactive demo of noisy DDIM inversion capabilities on top of Instant-Style styling method This method proposed in [Controllability of diffusion models]() *by Eyal Benaroche, Clément Chadebec, Onur Tasar, and Benjamin Aubin* from Jasper Research in the context of Eyal's internship with Ecole Polytechnique. A style benchmark : [style-bench](https://gojasper.github.io/style-bench) was also provided to facilitate evaluation of diffusion models for styling purposes. """ OPEN_SOURCE_PROMO = f""" If you enjoy the space, please also promote *open-source* by giving a ⭐ to our repo [![GitHub Stars](https://img.shields.io/github/stars/gojasper/style-bench?style=social)](https://github.com/gojasper/style-bench) """ DISCLAIMER = f""" This demo is only for research purpose. Users are solely responsible for any content they create, and it is their obligation to ensure that it adheres to appropriate and ethical standards. """ if not torch.cuda.is_available(): DESCRIPTION += "\n

Running on CPU 🥶 This demo does not work on CPU.

" MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "1024")) USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE") == "1" device = torch.device("cuda" if torch.cuda.is_available() else "cpu") if gr.NO_RELOAD: if torch.cuda.is_available(): vae = AutoencoderKL.from_pretrained( "madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16 ) pipe = StableDiffusionXLPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-base-1.0", vae=vae, torch_dtype=torch.float16, use_safetensors=True, variant="fp16", ) pipe.load_ip_adapter( "h94/IP-Adapter", subfolder="sdxl_models", weight_name="ip-adapter_sdxl.safetensors" ) pipe.to(device) forward_scheduler = DDIMScheduler.from_pretrained( "stabilityai/stable-diffusion-xl-base-1.0", subfolder="scheduler" ) invert_scheduler = DDIMInverseScheduler(**forward_scheduler.config) css = """ h1 { text-align: center; display:block; } p { text-align: justify; display:block; } """ def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: if randomize_seed: seed = random.randint(0, MAX_SEED) return seed def img_to_latents(x: torch.Tensor, vae: AutoencoderKL): x = 2.0 * x - 1.0 posterior = vae.encode(x).latent_dist latents = posterior.mean * 0.18215 return latents def invert_image(model, image: np.ndarray, n_steps: int, width:int, height:int): model.scheduler = invert_scheduler image = PIL.Image.fromarray(image).resize((width, height)) image_tensor = ToTensor()(image).to(model.device, dtype=torch.float16) image_tensor = image_tensor.unsqueeze(0) latent = img_to_latents(image_tensor, model.vae) print(latent) model.set_ip_adapter_scale(0) inv_latents = model( prompt="", negative_prompt="", ip_adapter_image=image, guidance_scale=1.0, output_type="latent", return_dict=False, num_inference_steps=n_steps, latents=latent, )[0] return inv_latents @spaces.GPU def generate( prompt: str, negative_prompt: str = "", prompt_2: str = "", negative_prompt_2: str = "", use_negative_prompt: bool = False, use_prompt_2: bool = False, use_negative_prompt_2: bool = False, seed: int = 0, width: int = 1024, height: int = 1024, guidance_scale_base: float = 5.0, num_inference_steps_base: int = 25, style_image_value = None, noise_scale: float = 1.5, ) -> PIL.Image.Image: torch.manual_seed(seed) if not use_negative_prompt: negative_prompt = None # type: ignore if not use_prompt_2: prompt_2 = None # type: ignore if not use_negative_prompt_2: negative_prompt_2 = None # type: ignore # Add scaled noise to the latent noise = torch.randn(1, 4, width // 8, height // 8).to(device, dtype=torch.float16) # Invert the image and get the latent if style_image_value is not None: latent = invert_image(pipe, style_image_value, 30, width, height) print("Image was inverted") print(latent) latent = latent + noise_scale * noise latent = latent / torch.sqrt(torch.tensor(1 + noise_scale**2).to(device, dtype=torch.float16)) else: latent = noise print("Noise added") print(latent) scale = { "up": {"block_0": [0.0, 1.0, 0.0]}, } pipe.set_ip_adapter_scale(scale) pipe.scheduler = forward_scheduler image = pipe( prompt=prompt, negative_prompt=negative_prompt, ip_adapter_image=style_image_value, latents=latent, prompt_2=prompt_2, negative_prompt_2=negative_prompt_2, guidance_scale=guidance_scale_base, num_inference_steps=num_inference_steps_base, output_type="pil", ).images[0] return image examples = [ "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", "An astronaut riding a green horse", ] with gr.Blocks(css=css) as demo: gr.Markdown(DESCRIPTION) gr.Markdown(OPEN_SOURCE_PROMO) with gr.Row(): with gr.Blocks(): with gr.Column(): style_image = gr.Image() noise_scale = gr.Slider( label="Noise Scale", minimum=0, maximum=5, step=0.1, value=1.5, ) with gr.Blocks(): with gr.Column(): with gr.Row(): prompt = gr.Text( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False, ) run_button = gr.Button("Run", scale=0) result = gr.Image(label="Result", show_label=False) with gr.Accordion("Advanced options", open=False): with gr.Row(): use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=False) use_prompt_2 = gr.Checkbox(label="Use prompt 2", value=False) use_negative_prompt_2 = gr.Checkbox( label="Use negative prompt 2", value=False ) negative_prompt = gr.Text( label="Negative prompt", max_lines=1, placeholder="Enter a negative prompt", visible=False, ) prompt_2 = gr.Text( label="Prompt 2", max_lines=1, placeholder="Enter your prompt", visible=False, ) negative_prompt_2 = gr.Text( label="Negative prompt 2", max_lines=1, placeholder="Enter a negative prompt", visible=False, ) seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(): width = gr.Slider( label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, ) height = gr.Slider( label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, ) with gr.Row(): guidance_scale_base = gr.Slider( label="Guidance scale for base", minimum=1, maximum=20, step=0.1, value=5.0, ) num_inference_steps_base = gr.Slider( label="Number of inference steps for base", minimum=10, maximum=100, step=1, value=25, ) with gr.Row(visible=False) as refiner_params: guidance_scale_refiner = gr.Slider( label="Guidance scale for refiner", minimum=1, maximum=20, step=0.1, value=5.0, ) num_inference_steps_refiner = gr.Slider( label="Number of inference steps for refiner", minimum=10, maximum=100, step=1, value=25, ) gr.Examples( examples=examples, inputs=prompt, outputs=result, fn=generate, ) gr.Markdown("## Disclaimer") gr.Markdown(DISCLAIMER) use_negative_prompt.change( fn=lambda x: gr.update(visible=x), inputs=use_negative_prompt, outputs=negative_prompt, queue=False, api_name=False, ) use_prompt_2.change( fn=lambda x: gr.update(visible=x), inputs=use_prompt_2, outputs=prompt_2, queue=False, api_name=False, ) use_negative_prompt_2.change( fn=lambda x: gr.update(visible=x), inputs=use_negative_prompt_2, outputs=negative_prompt_2, queue=False, api_name=False, ) gr.on( triggers=[ prompt.submit, negative_prompt.submit, prompt_2.submit, negative_prompt_2.submit, run_button.click, ], fn=randomize_seed_fn, inputs=[seed, randomize_seed], outputs=seed, queue=False, api_name=False, ).then( fn=generate, inputs=[ prompt, negative_prompt, prompt_2, negative_prompt_2, use_negative_prompt, use_prompt_2, use_negative_prompt_2, seed, width, height, guidance_scale_base, num_inference_steps_base, style_image, noise_scale, ], outputs=result, api_name="run", ) if __name__ == "__main__": demo.launch()