Spaces:
Runtime error
Runtime error
| # coding=utf-8 | |
| # Copyright 2022 x-plug The HuggingFace Inc. team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """ PyTorch MplugOwl model. """ | |
| import logging | |
| import math | |
| from typing import Any, Optional, Tuple, Union | |
| try: | |
| from flash_attn.flash_attn_interface import flash_attn_unpadded_func | |
| flash_attn_func = flash_attn_unpadded_func | |
| except: | |
| flash_attn_func = None | |
| print("install flash-attn first.") | |
| import math | |
| from dataclasses import dataclass | |
| from typing import Any, Optional, Tuple, Union | |
| import torch | |
| import torch.utils.checkpoint | |
| from torch import nn | |
| import einops | |
| from transformers.modeling_outputs import ( | |
| BaseModelOutput, | |
| BaseModelOutputWithPooling, | |
| BaseModelOutputWithPastAndCrossAttentions | |
| ) | |
| from transformers.modeling_utils import PreTrainedModel | |
| from transformers.pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer | |
| from transformers.utils import ( | |
| ModelOutput, | |
| add_start_docstrings, | |
| add_start_docstrings_to_model_forward, | |
| logging, | |
| replace_return_docstrings, | |
| ) | |
| from transformers.models.auto import AutoModelForCausalLM | |
| from .configuration_mplug_owl import MplugOwlConfig, MplugOwlVisionConfig, MplugOwlVisualAbstractorConfig | |
| logger = logging.get_logger(__name__) | |
| _CHECKPOINT_FOR_DOC = "MAGAer13/mplug-owl-llama-7b" | |
| _CONFIG_FOR_DOC = "MplugOwlConfig" | |
| MPLUG_OWL_PRETRAINED_MODEL_ARCHIVE_LIST = [ | |
| "MAGAer13/mplug-owl-llama-7b", | |
| # See all MplugOwl models at https://huggingface.co/models?filter=mplug_owl | |
| ] | |
| class MplugOwlForConditionalGenerationModelOutput(ModelOutput): | |
| """ | |
| Class defining the outputs of [`MPlugOwlForConditionalGeneration`]. | |
| Args: | |
| loss (`torch.FloatTensor`, *optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`): | |
| Language modeling loss from the language model. | |
| logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): | |
| Prediction scores of the language modeling head of the language model. | |
| vision_outputs (`BaseModelOutputWithPooling`): | |
| Outputs of the vision encoder. | |
| language_model_outputs (`CausalLMOutputWithPast` or `Seq2SeqLMOutput`): | |
| Outputs of the language model. | |
| """ | |
| loss: Optional[Tuple[torch.FloatTensor]] = None | |
| logits: Optional[Tuple[torch.FloatTensor]] = None | |
| vision_outputs: Optional[torch.FloatTensor] = None | |
| language_model_outputs: Optional[Tuple[torch.FloatTensor]] = None | |
| def to_tuple(self) -> Tuple[Any]: | |
| return tuple( | |
| self[k] if k not in ["vision_outputs", "language_model_outputs"] else getattr(self, k).to_tuple() | |
| for k in self.keys() | |
| ) | |
| def get_ltor_masks_and_position_ids_from_embeddings(data): | |
| """Build masks and position id for left to right model.""" | |
| # Extract batch size and sequence length. | |
| micro_batch_size, seq_length = data.size()[:2] | |
| # Attention mask (lower triangular). | |
| att_mask_batch = 1 | |
| attention_mask = torch.tril(torch.ones((att_mask_batch, seq_length, seq_length), device=data.device)).view( | |
| att_mask_batch, 1, seq_length, seq_length | |
| ) | |
| # Loss mask. | |
| loss_mask = torch.ones(data.size()[:2], dtype=torch.float, device=data.device) | |
| # Position ids. | |
| position_ids = torch.arange(seq_length, dtype=torch.long, device=data.device) | |
| position_ids = position_ids.unsqueeze(0).expand_as(data[..., 0]) | |
| # Convert attention mask to binary: | |
| attention_mask = attention_mask < 0.5 | |
| return attention_mask, loss_mask, position_ids | |
| class MplugOwlVisionEmbeddings(nn.Module): | |
| def __init__(self, config: MplugOwlVisionConfig): | |
| super().__init__() | |
| self.config = config | |
| self.hidden_size = config.hidden_size | |
| self.image_size = config.image_size | |
| self.patch_size = config.patch_size | |
| self.cls_token = nn.Parameter(torch.randn(1, 1, self.hidden_size)) | |
| self.patch_embed = nn.Conv2d( | |
| in_channels=3, | |
| out_channels=self.hidden_size, | |
| kernel_size=self.patch_size, | |
| stride=self.patch_size, | |
| bias=False, | |
| ) | |
| self.num_patches = (self.image_size // self.patch_size) ** 2 | |
| self.position_embedding = nn.Parameter(torch.randn(1, self.num_patches + 1, self.hidden_size)) | |
| self.pre_layernorm = LayerNormFp32(self.hidden_size, eps=config.layer_norm_eps) | |
| def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor: | |
| # [B, C, T, H, W] or [B, C, H, W] | |
| batch_size = pixel_values.size(0) | |
| T = pixel_values.size(2) if pixel_values.dim() > 4 else 1 | |
| if T > 1: | |
| pixel_values = einops.rearrange(pixel_values, 'b c t h w -> (b t) c h w') | |
| image_embeds = self.patch_embed(pixel_values) | |
| image_embeds = image_embeds.flatten(2).transpose(1, 2) | |
| class_embeds = self.cls_token.expand(batch_size * T, 1, -1).to(image_embeds.dtype) | |
| embeddings = torch.cat([class_embeds, image_embeds], dim=1) | |
| embeddings = embeddings + self.position_embedding[:, : embeddings.size(1)].to(image_embeds.dtype) | |
| embeddings = self.pre_layernorm(embeddings) | |
| embeddings = einops.rearrange(embeddings, '(b t) n d -> b t n d', b=batch_size) | |
| return embeddings | |
| class LayerNormFp32(nn.LayerNorm): | |
| """Subclass torch's LayerNorm to handle fp16 (by casting to float32 and back).""" | |
| def __init__(self, *args, **kwargs): | |
| super().__init__(*args, **kwargs) | |
| def forward(self, x: torch.Tensor): | |
| output = torch.nn.functional.layer_norm( | |
| x.float(), | |
| self.normalized_shape, | |
| self.weight.float() if self.weight is not None else None, | |
| self.bias.float() if self.bias is not None else None, | |
| self.eps, | |
| ) | |
| return output.type_as(x) | |
| class QuickGELU(nn.Module): | |
| def forward(self, x: torch.Tensor): | |
| return x * torch.sigmoid(1.702 * x) | |
| class MplugOwlVisionLocalTemporal(nn.Module): | |
| def __init__(self, config): | |
| super(MplugOwlVisionLocalTemporal, self).__init__() | |
| self.image_size = config.image_size | |
| self.patch_size = config.patch_size | |
| self.num_patches = 1 + (self.image_size // self.patch_size) ** 2 | |
| self.hidden_size = config.hidden_size | |
| d_bottleneck = self.hidden_size // 2 | |
| self.ln = LayerNormFp32(self.hidden_size) | |
| self.down_proj = nn.Conv3d(self.hidden_size, d_bottleneck, kernel_size=1, stride=1, padding=0) | |
| self.conv = nn.Conv3d(d_bottleneck, d_bottleneck, kernel_size=(3, 1, 1), stride=1, padding=(1, 0, 0), groups=d_bottleneck) | |
| self.up_proj = nn.Conv3d(d_bottleneck, self.hidden_size, kernel_size=1, stride=1, padding=0) | |
| nn.init.constant_(self.up_proj.weight, 0) | |
| nn.init.constant_(self.up_proj.bias, 0) | |
| self.activation_func = QuickGELU() | |
| def forward(self, x): | |
| # [b, t, s, c] | |
| T = x.size(1) | |
| H = int((self.num_patches - 1)**0.5) | |
| cls_token, x = x[:, :, 0:1], x[:, :, 1:] | |
| x = self.ln(x) | |
| x = einops.rearrange(x, 'b t (h w) c -> b c t h w', h=H) | |
| x = self.down_proj(x) | |
| _device = x.device | |
| self = self.to('cpu') # hack: cpu offloading since bfloat16 on gpu gives error with conv_depthwise3d | |
| x = x.to('cpu') | |
| x = self.conv(x) | |
| self = self.to(_device) | |
| x = x.to(_device) | |
| x = self.activation_func(x) | |
| x = self.up_proj(x) | |
| x = einops.rearrange(x, 'b c t h w -> b t (h w) c') | |
| x = torch.cat([cls_token, x], dim = 2) | |
| return x | |
| class MplugOwlVisionAttention(nn.Module): | |
| """Multi-headed attention from 'Attention Is All You Need' paper""" | |
| def __init__(self, config): | |
| super().__init__() | |
| self.config = config | |
| self.hidden_size = config.hidden_size | |
| self.num_heads = config.num_attention_heads | |
| self.head_dim = self.hidden_size // self.num_heads | |
| if self.head_dim * self.num_heads != self.hidden_size: | |
| raise ValueError( | |
| f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size} and `num_heads`:" | |
| f" {self.num_heads})." | |
| ) | |
| self.scale = self.head_dim**-0.5 | |
| self.dropout = nn.Dropout(config.attention_dropout) | |
| self.query_key_value = nn.Linear(self.hidden_size, 3 * self.hidden_size) | |
| self.dense = nn.Linear(self.hidden_size, self.hidden_size) | |
| def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): | |
| return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() | |
| def forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| head_mask: Optional[torch.Tensor] = None, | |
| output_attentions: Optional[bool] = False, | |
| ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | |
| """Input shape: Batch x Time x Channel""" | |
| bsz, seq_len, embed_dim = hidden_states.size() | |
| mixed_qkv = self.query_key_value(hidden_states) | |
| mixed_qkv = mixed_qkv.reshape(bsz, seq_len, self.num_heads, 3, embed_dim // self.num_heads).permute( | |
| 3, 0, 2, 1, 4 | |
| ) # [3, b, np, sq, hn] | |
| query_states, key_states, value_states = ( | |
| mixed_qkv[0], | |
| mixed_qkv[1], | |
| mixed_qkv[2], | |
| ) | |
| # if self.config.use_flash_attn and flash_attn_func is not None: | |
| if False: | |
| # [b*sq, np, hn] | |
| query_states = query_states.permute(0, 2, 1, 3).contiguous() | |
| query_states = query_states.view(query_states.size(0) * query_states.size(1), query_states.size(2), -1) | |
| key_states = key_states.permute(0, 2, 1, 3).contiguous() | |
| key_states = key_states.view(key_states.size(0) * key_states.size(1), key_states.size(2), -1) | |
| value_states = value_states.permute(0, 2, 1, 3).contiguous() | |
| value_states = value_states.view(value_states.size(0) * value_states.size(1), value_states.size(2), -1) | |
| cu_seqlens = torch.arange( | |
| 0, (bsz + 1) * seq_len, step=seq_len, dtype=torch.int32, device=query_states.device | |
| ) | |
| context_layer = flash_attn_func( | |
| query_states, | |
| key_states, | |
| value_states, | |
| cu_seqlens, | |
| cu_seqlens, | |
| seq_len, | |
| seq_len, | |
| self.dropout if self.training else 0.0, | |
| softmax_scale=self.scale, | |
| causal=False, | |
| return_attn_probs=False, | |
| ) | |
| # [b*sq, np, hn] => [b, sq, np, hn] | |
| context_layer = context_layer.view(bsz, seq_len, context_layer.size(1), context_layer.size(2)) | |
| else: | |
| # Take the dot product between "query" and "key" to get the raw attention scores. | |
| attention_scores = torch.matmul(query_states, key_states.transpose(-1, -2)) | |
| attention_scores = attention_scores * self.scale | |
| # Normalize the attention scores to probabilities. | |
| attention_probs = torch.softmax(attention_scores, dim=-1) | |
| # This is actually dropping out entire tokens to attend to, which might | |
| # seem a bit unusual, but is taken from the original Transformer paper. | |
| attention_probs = self.dropout(attention_probs) | |
| # Mask heads if we want to | |
| if head_mask is not None: | |
| attention_probs = attention_probs * head_mask | |
| context_layer = torch.matmul(attention_probs, value_states).permute(0, 2, 1, 3) | |
| new_context_layer_shape = context_layer.size()[:-2] + (self.hidden_size,) | |
| context_layer = context_layer.reshape(new_context_layer_shape) | |
| output = self.dense(context_layer) | |
| outputs = (output, attention_probs) if output_attentions else (output, None) | |
| return outputs | |
| class MplugOwlMLP(nn.Module): | |
| def __init__(self, config): | |
| super().__init__() | |
| self.config = config | |
| self.activation_fn = QuickGELU() | |
| self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size) | |
| self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size) | |
| def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
| hidden_states = self.fc1(hidden_states) | |
| hidden_states = self.activation_fn(hidden_states) | |
| hidden_states = self.fc2(hidden_states) | |
| return hidden_states | |
| class MplugOwlVisionEncoderLayer(nn.Module): | |
| def __init__(self, config: MplugOwlVisionConfig): | |
| super().__init__() | |
| self.hidden_size = config.hidden_size | |
| self.temporal = MplugOwlVisionLocalTemporal(config) | |
| self.self_attn = MplugOwlVisionAttention(config) | |
| self.input_layernorm = LayerNormFp32(self.hidden_size, eps=config.layer_norm_eps) | |
| self.mlp = MplugOwlMLP(config) | |
| self.post_attention_layernorm = LayerNormFp32(self.hidden_size, eps=config.layer_norm_eps) | |
| def forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| attention_mask: torch.Tensor, | |
| output_attentions: Optional[bool] = False, | |
| ) -> Tuple[torch.FloatTensor]: | |
| """ | |
| Args: | |
| hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, time, seq_len, embed_dim)` | |
| attention_mask (`torch.FloatTensor`): attention mask of size | |
| `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. | |
| `(config.encoder_attention_heads,)`. | |
| output_attentions (`bool`, *optional*): | |
| Whether or not to return the attentions tensors of all attention layers. See `attentions` under | |
| returned tensors for more detail. | |
| """ | |
| B, T = hidden_states.size(0), hidden_states.size(1) | |
| if T > 1: | |
| hidden_states = hidden_states + self.temporal(hidden_states) | |
| hidden_states = einops.rearrange(hidden_states, 'b t n d -> (b t) n d') | |
| residual = hidden_states | |
| hidden_states = self.input_layernorm(hidden_states) | |
| hidden_states, attn_weights = self.self_attn( | |
| hidden_states=hidden_states, | |
| head_mask=attention_mask, | |
| output_attentions=output_attentions, | |
| ) | |
| hidden_states = hidden_states + residual | |
| residual = hidden_states | |
| hidden_states = self.post_attention_layernorm(hidden_states) | |
| hidden_states = self.mlp(hidden_states) | |
| hidden_states = hidden_states + residual | |
| hidden_states = einops.rearrange(hidden_states, '(b t) n d -> b t n d', b=B) | |
| outputs = (hidden_states,) | |
| if output_attentions: | |
| outputs += (attn_weights,) | |
| return outputs | |
| class MplugOwlPreTrainedModel(PreTrainedModel): | |
| """ | |
| An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained | |
| models. | |
| """ | |
| config_class = MplugOwlConfig | |
| base_model_prefix = "mplug_owl" | |
| supports_gradient_checkpointing = True | |
| _keys_to_ignore_on_load_missing = [ | |
| r"position_ids", | |
| r"language_model.encoder.embed_tokens.weight", | |
| r"language_model.decoder.embed_tokens.weight", | |
| r"language_model.lm_head.weight", | |
| ] | |
| _no_split_modules = [ | |
| "MplugOwlVisionEncoderLayer", | |
| "LlamaDecoderLayer", | |
| "MplugOwlVisualAbstractorLayer", | |
| "LlamaForCausalLM", | |
| "Parameter", | |
| ] | |
| _keep_in_fp32_modules = ["wo"] | |
| def _init_weights(self, module): | |
| """Initialize the weights""" | |
| factor = self.config.initializer_range | |
| if isinstance(module, nn.Conv2d) or isinstance(module, nn.Embedding) or isinstance(module, nn.Linear): | |
| module.weight.data.normal_(mean=0.0, std=factor) | |
| if hasattr(module, "bias") and module.bias is not None: | |
| module.bias.data.zero_() | |
| if isinstance(module, MplugOwlVisionEmbeddings): | |
| if hasattr(self.config, "vision_config"): | |
| factor = self.config.vision_config.initializer_range | |
| nn.init.trunc_normal_(module.position_embedding, mean=0.0, std=factor) | |
| nn.init.trunc_normal_(module.cls_token, mean=0.0, std=factor) | |
| elif isinstance(module, nn.LayerNorm): | |
| module.bias.data.zero_() | |
| module.weight.data.fill_(1.0) | |
| elif isinstance(module, nn.Linear) and module.bias is not None: | |
| module.bias.data.zero_() | |
| elif isinstance(module, nn.Parameter): | |
| raise ValueError | |
| nn.init.trunc_normal_(module.data, mean=0.0, std=factor) | |
| def _set_gradient_checkpointing(self, module, value=False): | |
| if isinstance(module, MplugOwlVisionEncoder): | |
| module.gradient_checkpointing = value | |
| MPLUG_OWL_START_DOCSTRING = r""" | |
| This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the | |
| library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads | |
| etc.) | |
| This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. | |
| Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage | |
| and behavior. | |
| Parameters: | |
| config ([`MplugOwlConfig`]): Model configuration class with all the parameters of the model. | |
| Initializing with a config file does not load the weights associated with the model, only the | |
| configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. | |
| """ | |
| MPLUG_OWL_VISION_INPUTS_DOCSTRING = r""" | |
| Args: | |
| pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): | |
| Pixel values. Pixel values can be obtained using [`MplugOwlProcessor`]. See [`MplugOwlProcessor.__call__`] for | |
| details. | |
| output_attentions (`bool`, *optional*): | |
| Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | |
| tensors for more detail. | |
| output_hidden_states (`bool`, *optional*): | |
| Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
| more detail. | |
| return_dict (`bool`, *optional*): | |
| Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
| """ | |
| MPLUG_OWL_TEXT_INPUTS_DOCSTRING = r""" | |
| Args: | |
| input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): | |
| Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide | |
| it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | |
| [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) | |
| attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): | |
| Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | |
| - 1 for tokens that are **not masked**, | |
| - 0 for tokens that are **masked**. | |
| [What are attention masks?](../glossary#attention-mask) | |
| decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*): | |
| Indices of decoder input sequence tokens in the vocabulary. | |
| Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | |
| [`PreTrainedTokenizer.__call__`] for details. | |
| [What are decoder input IDs?](../glossary#decoder-input-ids) | |
| T5 uses the `pad_token_id` as the starting token for `decoder_input_ids` generation. If `past_key_values` | |
| is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`). | |
| To know more on how to prepare `decoder_input_ids` for pretraining take a look at [T5 | |
| Training](./t5#training). | |
| decoder_attention_mask (`torch.BoolTensor` of shape `(batch_size, target_sequence_length)`, *optional*): | |
| Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also | |
| be used by default. | |
| output_attentions (`bool`, *optional*): | |
| Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | |
| tensors for more detail. | |
| output_hidden_states (`bool`, *optional*): | |
| Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
| more detail. | |
| return_dict (`bool`, *optional*): | |
| Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
| """ | |
| MPLUG_OWL_INPUTS_DOCSTRING = r""" | |
| Args: | |
| pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): | |
| Pixel values. Pixel values can be obtained using [`MplugOwlProcessor`]. See [`MplugOwlProcessor.__call__`] for | |
| details. | |
| input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
| Indices of input sequence tokens in the vocabulary of the language model. Input tokens can optionally be | |
| provided to serve as text prompt, which the language model can continue. | |
| Indices can be obtained using [`MplugOwlProcessor`]. See [`MplugOwlProcessor.__call__`] for details. | |
| [What are input IDs?](../glossary#input-ids) | |
| attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): | |
| Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | |
| - 1 for tokens that are **not masked**, | |
| - 0 for tokens that are **masked**. | |
| [What are attention masks?](../glossary#attention-mask) | |
| decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*): | |
| Indices of decoder input sequence tokens in the vocabulary of the language model. Only relevant in case an | |
| encoder-decoder language model (like T5) is used. | |
| Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | |
| [`PreTrainedTokenizer.__call__`] for details. [What are decoder input IDs?](../glossary#decoder-input-ids) | |
| decoder_attention_mask (`torch.BoolTensor` of shape `(batch_size, target_sequence_length)`, *optional*): | |
| Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also | |
| be used by default. | |
| Only relevant in case an encoder-decoder language model (like T5) is used. | |
| output_attentions (`bool`, *optional*): | |
| Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | |
| tensors for more detail. | |
| output_hidden_states (`bool`, *optional*): | |
| Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
| more detail. | |
| return_dict (`bool`, *optional*): | |
| Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
| """ | |
| class MplugOwlVisionEncoder(nn.Module): | |
| """ | |
| Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a | |
| [`MplugOwlVisionEncoderLayer`]. | |
| Args: | |
| config (`MplugOwlVisionConfig`): | |
| The corresponding vision configuration for the `MplugOwlEncoder`. | |
| """ | |
| def __init__(self, config: MplugOwlVisionConfig): | |
| super().__init__() | |
| self.config = config | |
| self.layers = nn.ModuleList([MplugOwlVisionEncoderLayer(config) for _ in range(config.num_hidden_layers)]) | |
| self.gradient_checkpointing = False | |
| def forward( | |
| self, | |
| inputs_embeds, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| output_attentions: Optional[bool] = None, | |
| output_hidden_states: Optional[bool] = None, | |
| return_dict: Optional[bool] = None, | |
| ) -> Union[Tuple, BaseModelOutput]: | |
| r""" | |
| Args: | |
| inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): | |
| Embedded representation of the inputs. Should be float, not int tokens. | |
| attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): | |
| Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | |
| - 1 for tokens that are **not masked**, | |
| - 0 for tokens that are **masked**. | |
| [What are attention masks?](../glossary#attention-mask) | |
| output_attentions (`bool`, *optional*): | |
| Whether or not to return the attentions tensors of all attention layers. See `attentions` under | |
| returned tensors for more detail. | |
| output_hidden_states (`bool`, *optional*): | |
| Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors | |
| for more detail. | |
| return_dict (`bool`, *optional*): | |
| Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
| """ | |
| output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
| output_hidden_states = ( | |
| output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
| ) | |
| return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
| encoder_states = () if output_hidden_states else None | |
| all_attentions = () if output_attentions else None | |
| hidden_states = inputs_embeds | |
| for idx, encoder_layer in enumerate(self.layers): | |
| if output_hidden_states: | |
| encoder_states = encoder_states + (hidden_states,) | |
| if self.gradient_checkpointing and self.training: | |
| def create_custom_forward(module): | |
| def custom_forward(*inputs): | |
| return module(*inputs, output_attentions) | |
| return custom_forward | |
| layer_outputs = torch.utils.checkpoint.checkpoint( | |
| create_custom_forward(encoder_layer), | |
| hidden_states, | |
| attention_mask, | |
| ) | |
| else: | |
| layer_outputs = encoder_layer( | |
| hidden_states, | |
| attention_mask, | |
| output_attentions=output_attentions, | |
| ) | |
| hidden_states = layer_outputs[0] | |
| if output_attentions: | |
| all_attentions = all_attentions + (layer_outputs[1],) | |
| if output_hidden_states: | |
| encoder_states = encoder_states + (hidden_states,) | |
| if not return_dict: | |
| return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) | |
| return BaseModelOutput( | |
| last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions | |
| ) | |
| class MplugOwlVisionModel(MplugOwlPreTrainedModel): | |
| main_input_name = "pixel_values" | |
| config_class = MplugOwlVisionConfig | |
| def __init__(self, config: MplugOwlVisionConfig): | |
| super().__init__(config) | |
| self.config = config | |
| self.hidden_size = config.hidden_size | |
| self.embeddings = MplugOwlVisionEmbeddings(config) | |
| self.encoder = MplugOwlVisionEncoder(config) | |
| self.post_layernorm = LayerNormFp32(self.hidden_size, eps=config.layer_norm_eps) | |
| self.post_init() | |
| def forward( | |
| self, | |
| pixel_values: Optional[torch.FloatTensor] = None, | |
| output_attentions: Optional[bool] = None, | |
| output_hidden_states: Optional[bool] = None, | |
| return_dict: Optional[bool] = None, | |
| ) -> Union[Tuple, BaseModelOutputWithPooling]: | |
| r""" | |
| Returns: | |
| """ | |
| output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
| output_hidden_states = ( | |
| output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
| ) | |
| return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
| if pixel_values is None: | |
| raise ValueError("You have to specify pixel_values") | |
| hidden_states = self.embeddings(pixel_values) # [B, T, N, D] | |
| encoder_outputs = self.encoder( | |
| inputs_embeds=hidden_states, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| ) | |
| last_hidden_state = encoder_outputs[0] | |
| last_hidden_state = self.post_layernorm(last_hidden_state) | |
| pooled_output = last_hidden_state[:, :, 0, :].mean(1) | |
| pooled_output = self.post_layernorm(pooled_output) | |
| if not return_dict: | |
| return (last_hidden_state, pooled_output) + encoder_outputs[1:] | |
| return BaseModelOutputWithPooling( | |
| last_hidden_state=last_hidden_state, | |
| pooler_output=pooled_output, | |
| hidden_states=encoder_outputs.hidden_states, | |
| attentions=encoder_outputs.attentions, | |
| ) | |
| def get_input_embeddings(self): | |
| return self.embeddings | |
| class MplugOwlVisualAbstractorMLP(nn.Module): | |
| def __init__(self, config: MplugOwlVisualAbstractorConfig): | |
| super().__init__() | |
| self.config = config | |
| in_features = config.hidden_size | |
| hidden_features = config.intermediate_size | |
| if hidden_features != 2816: | |
| hidden_features = int(2 * hidden_features / 3) | |
| multiple_of = 256 | |
| hidden_features = multiple_of * ((hidden_features + multiple_of - 1) // multiple_of) | |
| self.act = nn.SiLU() | |
| self.w1 = nn.Linear(in_features, hidden_features) | |
| self.w2 = nn.Linear(hidden_features, in_features) | |
| self.w3 = nn.Linear(in_features, hidden_features) | |
| self.ffn_ln = LayerNormFp32(hidden_features, eps=config.layer_norm_eps) | |
| def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
| hidden_states = self.act(self.w1(hidden_states)) * self.w3(hidden_states) | |
| hidden_states = self.ffn_ln(hidden_states) | |
| hidden_states = self.w2(hidden_states) | |
| return hidden_states | |
| class MplugOwlVisualAbstractorMultiHeadAttention(nn.Module): | |
| def __init__(self, config: MplugOwlVisualAbstractorConfig): | |
| super().__init__() | |
| self.config = config | |
| if config.hidden_size % config.num_attention_heads != 0: | |
| raise ValueError( | |
| "The hidden size (%d) is not a multiple of the number of attention heads (%d)" | |
| % (config.hidden_size, config.num_attention_heads) | |
| ) | |
| self.num_attention_heads = config.num_attention_heads | |
| self.attention_head_size = int(config.hidden_size / config.num_attention_heads) | |
| self.all_head_size = self.num_attention_heads * self.attention_head_size | |
| self.query = nn.Linear(config.hidden_size, self.all_head_size) | |
| self.key = nn.Linear(config.encoder_hidden_size, self.all_head_size) | |
| self.value = nn.Linear(config.encoder_hidden_size, self.all_head_size) | |
| self.dropout = nn.Dropout(config.attention_probs_dropout_prob) | |
| self.save_attention = False | |
| def save_attn_gradients(self, attn_gradients): | |
| self.attn_gradients = attn_gradients | |
| def get_attn_gradients(self): | |
| return self.attn_gradients | |
| def save_attention_map(self, attention_map): | |
| self.attention_map = attention_map | |
| def get_attention_map(self): | |
| return self.attention_map | |
| def transpose_for_scores(self, x): | |
| new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) | |
| x = x.view(*new_x_shape) | |
| return x.permute(0, 2, 1, 3) | |
| def forward( | |
| self, | |
| hidden_states, | |
| attention_mask=None, | |
| head_mask=None, | |
| encoder_hidden_states=None, | |
| encoder_attention_mask=None, | |
| past_key_value=None, | |
| output_attentions=False, | |
| ): | |
| # If this is instantiated as a cross-attention module, the keys | |
| # and values come from an encoder; the attention mask needs to be | |
| # such that the encoder's padding tokens are not attended to. | |
| key_layer = self.transpose_for_scores(self.key(encoder_hidden_states)) | |
| value_layer = self.transpose_for_scores(self.value(encoder_hidden_states)) | |
| attention_mask = encoder_attention_mask | |
| mixed_query_layer = self.query(hidden_states) | |
| query_layer = self.transpose_for_scores(mixed_query_layer) | |
| past_key_value = (key_layer, value_layer) | |
| # Take the dot product between "query" and "key" to get the raw attention scores. | |
| attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) | |
| attention_scores = attention_scores / math.sqrt(self.attention_head_size) | |
| if attention_mask is not None: | |
| # Apply the attention mask is (precomputed for all layers in BertModel forward() function) | |
| attention_scores = attention_scores + attention_mask | |
| # Normalize the attention scores to probabilities. | |
| attention_probs = nn.Softmax(dim=-1)(attention_scores) | |
| if self.save_attention: | |
| self.save_attention_map(attention_probs) | |
| attention_probs.register_hook(self.save_attn_gradients) | |
| # This is actually dropping out entire tokens to attend to, which might | |
| # seem a bit unusual, but is taken from the original Transformer paper. | |
| attention_probs_dropped = self.dropout(attention_probs) | |
| # Mask heads if we want to | |
| if head_mask is not None: | |
| attention_probs_dropped = attention_probs_dropped * head_mask | |
| context_layer = torch.matmul(attention_probs_dropped, value_layer) | |
| context_layer = context_layer.permute(0, 2, 1, 3).contiguous() | |
| new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) | |
| context_layer = context_layer.view(*new_context_layer_shape) | |
| outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) | |
| outputs = outputs + (past_key_value,) | |
| return outputs | |
| class MplugOwlVisualAbstractorCrossOutput(nn.Module): | |
| def __init__(self, config: MplugOwlVisualAbstractorConfig): | |
| super().__init__() | |
| dim = config.hidden_size | |
| self.out_proj = nn.Linear(dim, dim, bias=True) | |
| self.norm2 = LayerNormFp32(dim) | |
| self.mlp = MplugOwlVisualAbstractorMLP(config) | |
| def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: | |
| input_tensor = input_tensor + self.out_proj(hidden_states) | |
| input_tensor = input_tensor + self.mlp(self.norm2(input_tensor)) | |
| return input_tensor | |
| class MplugOwlVisualAbstractorAttention(nn.Module): | |
| def __init__(self, config: MplugOwlVisualAbstractorConfig): | |
| super().__init__() | |
| self.attention = MplugOwlVisualAbstractorMultiHeadAttention(config) | |
| self.output = MplugOwlVisualAbstractorCrossOutput(config) | |
| self.pruned_heads = set() | |
| self.norm1 = LayerNormFp32(config.hidden_size) | |
| self.normk = LayerNormFp32(config.hidden_size) | |
| def prune_heads(self, heads): | |
| if len(heads) == 0: | |
| return | |
| heads, index = find_pruneable_heads_and_indices( | |
| heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads | |
| ) | |
| # Prune linear layers | |
| self.attention.query = prune_linear_layer(self.attention.query, index) | |
| self.attention.key = prune_linear_layer(self.attention.key, index) | |
| self.attention.value = prune_linear_layer(self.attention.value, index) | |
| self.output.dense = prune_linear_layer(self.output.out_proj, index, dim=1) | |
| # Update hyper params and store pruned heads | |
| self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads) | |
| self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads | |
| self.pruned_heads = self.pruned_heads.union(heads) | |
| def forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| attention_mask: Optional[torch.FloatTensor] = None, | |
| head_mask: Optional[torch.FloatTensor] = None, | |
| encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
| encoder_attention_mask: Optional[torch.FloatTensor] = None, | |
| past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, | |
| output_attentions: Optional[bool] = False, | |
| ) -> Tuple[torch.Tensor]: | |
| # HACK we apply norm on q and k | |
| hidden_states = self.norm1(hidden_states) | |
| encoder_hidden_states = self.normk(encoder_hidden_states) | |
| encoder_hidden_states = torch.cat([hidden_states, encoder_hidden_states], dim=1) | |
| encoder_attention_mask = torch.cat([attention_mask, encoder_attention_mask], dim=-1) | |
| self_outputs = self.attention( | |
| hidden_states, | |
| attention_mask, | |
| head_mask, | |
| encoder_hidden_states, | |
| encoder_attention_mask, | |
| past_key_value, | |
| output_attentions, | |
| ) | |
| attention_output = self.output(self_outputs[0], hidden_states) | |
| # add attentions if we output them | |
| outputs = (attention_output,) + self_outputs[1:] | |
| return outputs | |
| class MplugOwlVisualAbstractorLayer(nn.Module): | |
| def __init__(self, config, layer_idx): | |
| super().__init__() | |
| self.chunk_size_feed_forward = config.chunk_size_feed_forward | |
| self.seq_len_dim = 1 | |
| self.layer_idx = layer_idx | |
| self.crossattention = MplugOwlVisualAbstractorAttention(config) | |
| self.has_cross_attention = True | |
| def forward( | |
| self, | |
| hidden_states, | |
| attention_mask=None, | |
| head_mask=None, | |
| encoder_hidden_states=None, | |
| encoder_attention_mask=None, | |
| output_attentions=False, | |
| ): | |
| if encoder_hidden_states is None: | |
| raise ValueError("encoder_hidden_states must be given for cross-attention layers") | |
| cross_attention_outputs = self.crossattention( | |
| hidden_states, | |
| attention_mask, | |
| head_mask, | |
| encoder_hidden_states, | |
| encoder_attention_mask, | |
| output_attentions=output_attentions, | |
| ) | |
| query_attention_output = cross_attention_outputs[0] | |
| outputs = (query_attention_output,) | |
| return outputs | |
| class MplugOwlVisualAbstractorEncoder(nn.Module): | |
| def __init__(self, config): | |
| super().__init__() | |
| self.config = config | |
| self.layers = nn.ModuleList( | |
| [MplugOwlVisualAbstractorLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] | |
| ) | |
| self.gradient_checkpointing = False | |
| def forward( | |
| self, | |
| hidden_states, | |
| attention_mask=None, | |
| head_mask=None, | |
| encoder_hidden_states=None, | |
| encoder_attention_mask=None, | |
| past_key_values=None, | |
| output_attentions=False, | |
| output_hidden_states=False, | |
| return_dict=True, | |
| ): | |
| all_hidden_states = () if output_hidden_states else None | |
| for i in range(self.config.num_hidden_layers): | |
| layer_module = self.layers[i] | |
| if output_hidden_states: | |
| all_hidden_states = all_hidden_states + (hidden_states,) | |
| layer_head_mask = head_mask[i] if head_mask is not None else None | |
| past_key_value = past_key_values[i] if past_key_values is not None else None | |
| if getattr(self.config, "gradient_checkpointing", False) and self.training: | |
| def create_custom_forward(module): | |
| def custom_forward(*inputs): | |
| return module(*inputs, past_key_value, output_attentions) | |
| return custom_forward | |
| layer_outputs = torch.utils.checkpoint.checkpoint( | |
| create_custom_forward(layer_module), | |
| hidden_states, | |
| attention_mask, | |
| layer_head_mask, | |
| encoder_hidden_states, | |
| encoder_attention_mask, | |
| ) | |
| else: | |
| layer_outputs = layer_module( | |
| hidden_states, | |
| attention_mask, | |
| layer_head_mask, | |
| encoder_hidden_states, | |
| encoder_attention_mask, | |
| output_attentions, | |
| ) | |
| hidden_states = layer_outputs[0] | |
| return BaseModelOutput( | |
| last_hidden_state=hidden_states, | |
| ) | |
| class MplugOwlVisualAbstractorModel(MplugOwlPreTrainedModel): | |
| def __init__(self, config: MplugOwlVisualAbstractorConfig, language_hidden_size): | |
| super().__init__(config) | |
| self.config = config | |
| self.encoder = MplugOwlVisualAbstractorEncoder(config) | |
| self.visual_fc = torch.nn.Linear(config.hidden_size, language_hidden_size) | |
| self.temporal_visual_fc = torch.nn.Linear(config.hidden_size, language_hidden_size) | |
| self.vit_eos = torch.nn.Parameter(torch.randn(1, 1, language_hidden_size)) | |
| nn.init.trunc_normal_(self.vit_eos, mean=0.0, std=self.config.initializer_range) | |
| self.post_init() | |
| def _prune_heads(self, heads_to_prune): | |
| """ | |
| Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base | |
| class PreTrainedModel | |
| """ | |
| for layer, heads in heads_to_prune.items(): | |
| self.encoder.layer[layer].attention.prune_heads(heads) | |
| def get_extended_attention_mask( | |
| self, | |
| attention_mask: torch.Tensor, | |
| input_shape: Tuple[int], | |
| device: torch.device, | |
| ) -> torch.Tensor: | |
| """ | |
| Makes broadcastable attention and causal masks so that future and masked tokens are ignored. | |
| Arguments: | |
| attention_mask (`torch.Tensor`): | |
| Mask with ones indicating tokens to attend to, zeros for tokens to ignore. | |
| input_shape (`Tuple[int]`): | |
| The shape of the input to the model. | |
| device: (`torch.device`): | |
| The device of the input to the model. | |
| Returns: | |
| `torch.Tensor` The extended attention mask, with a the same dtype as `attention_mask.dtype`. | |
| """ | |
| # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] | |
| # ourselves in which case we just need to make it broadcastable to all heads. | |
| if attention_mask.dim() == 3: | |
| extended_attention_mask = attention_mask[:, None, :, :] | |
| elif attention_mask.dim() == 2: | |
| # Provided a padding mask of dimensions [batch_size, seq_length] | |
| # - the model is an encoder, so make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length] | |
| extended_attention_mask = attention_mask[:, None, None, :] | |
| else: | |
| raise ValueError( | |
| "Wrong shape for input_ids (shape {}) or attention_mask (shape {})".format( | |
| input_shape, attention_mask.shape | |
| ) | |
| ) | |
| # Since attention_mask is 1.0 for positions we want to attend and 0.0 for | |
| # masked positions, this operation will create a tensor which is 0.0 for | |
| # positions we want to attend and -10000.0 for masked positions. | |
| # Since we are adding it to the raw scores before the softmax, this is | |
| # effectively the same as removing these entirely. | |
| extended_attention_mask = extended_attention_mask.to(dtype=self.dtype) # fp16 compatibility | |
| extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0 | |
| return extended_attention_mask | |
| def forward( | |
| self, | |
| query_embeds, | |
| temporal_query_embeds=None, | |
| attention_mask=None, | |
| head_mask=None, | |
| encoder_hidden_states=None, | |
| encoder_attention_mask=None, | |
| past_key_values=None, | |
| output_attentions=None, | |
| output_hidden_states=None, | |
| return_dict=None, | |
| ): | |
| r""" | |
| encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, `optional`): | |
| Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if | |
| the model is configured as a decoder. | |
| encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, `optional`): | |
| Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in | |
| the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: | |
| - 1 for tokens that are **not masked**, | |
| - 0 for tokens that are **masked**. | |
| past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of: | |
| shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and | |
| value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are | |
| used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key | |
| value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape | |
| `(batch_size, sequence_length)`. | |
| """ | |
| output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
| output_hidden_states = ( | |
| output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
| ) | |
| return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
| T = encoder_hidden_states.size(1) | |
| if T == 1 or temporal_query_embeds is None: | |
| embedding_output = query_embeds | |
| else: | |
| embedding_output = torch.cat([query_embeds, temporal_query_embeds], dim=1) | |
| input_shape = embedding_output.size()[:-1] | |
| batch_size, seq_length = input_shape | |
| device = embedding_output.device | |
| encoder_hidden_states = einops.rearrange( | |
| encoder_hidden_states, 'b t n d -> b (t n) d' | |
| ) | |
| # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] | |
| # ourselves in which case we just need to make it broadcastable to all heads. | |
| if attention_mask is None: | |
| attention_mask = torch.ones( | |
| (embedding_output.shape[0], embedding_output.shape[1]), dtype=torch.long, device=embedding_output.device | |
| ) | |
| extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape, device) | |
| # If a 2D or 3D attention mask is provided for the cross-attention | |
| # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] | |
| if encoder_hidden_states is not None: | |
| if type(encoder_hidden_states) == list: | |
| encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states[0].size() | |
| else: | |
| ( | |
| encoder_batch_size, | |
| encoder_sequence_length, | |
| _, | |
| ) = encoder_hidden_states.size() | |
| encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) | |
| if type(encoder_attention_mask) == list: | |
| encoder_extended_attention_mask = [self.invert_attention_mask(mask) for mask in encoder_attention_mask] | |
| elif encoder_attention_mask is None: | |
| encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device) | |
| encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) | |
| else: | |
| encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) | |
| else: | |
| encoder_extended_attention_mask = None | |
| # Prepare head mask if needed | |
| # 1.0 in head_mask indicate we keep the head | |
| # attention_probs has shape bsz x n_heads x N x N | |
| # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] | |
| # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] | |
| head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) | |
| encoder_outputs = self.encoder( | |
| embedding_output, | |
| attention_mask=extended_attention_mask, | |
| head_mask=head_mask, | |
| encoder_hidden_states=encoder_hidden_states, | |
| encoder_attention_mask=encoder_extended_attention_mask, | |
| past_key_values=past_key_values, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| ) | |
| sequence_output = encoder_outputs[0] | |
| pooled_output = sequence_output[:, 0, :] | |
| if T == 1 or temporal_query_embeds is None: | |
| temporal_sequence_output = None | |
| else: | |
| temporal_sequence_output = sequence_output[:, query_embeds.size(1):] | |
| sequence_output = sequence_output[:, :query_embeds.size(1)] | |
| sequence_output = self.visual_fc(sequence_output) | |
| if temporal_sequence_output is not None: | |
| sequence_output += self.temporal_visual_fc(temporal_sequence_output) | |
| sequence_output = torch.cat([sequence_output, self.vit_eos.repeat(sequence_output.shape[0], 1, 1)], dim=1) | |
| return BaseModelOutputWithPooling( | |
| last_hidden_state=sequence_output, | |
| pooler_output=pooled_output, | |
| hidden_states=encoder_outputs.hidden_states, | |
| ) | |
| class MplugOwlModel(MplugOwlPreTrainedModel): | |
| config_class = MplugOwlConfig | |
| main_input_name = "pixel_values" | |
| def __init__(self, config: MplugOwlConfig, *inputs, **kwargs): | |
| super().__init__(config, *inputs, **kwargs) | |
| self.vision_model = MplugOwlVisionModel(config.vision_config) | |
| self.query_tokens = nn.Parameter( | |
| torch.zeros(1, config.num_query_tokens, config.visual_abstractor_config.hidden_size) | |
| ) | |
| self.temporal_query_tokens = nn.Parameter( | |
| torch.zeros(1, config.num_query_tokens, config.visual_abstractor_config.hidden_size) | |
| ) | |
| self.abstractor = MplugOwlVisualAbstractorModel( | |
| config.visual_abstractor_config, config.text_config.hidden_size | |
| ) | |
| # if config.use_decoder_only_language_model: | |
| # from llama.modeling_llama import LlamaForCausalLM | |
| language_model = AutoModelForCausalLM.from_config(config.text_config) | |
| # else: | |
| # language_model = AutoModelForSeq2SeqLM.from_config(config.text_config) | |
| self.language_model = language_model | |
| # Initialize weights and apply final processing | |
| self.post_init() | |
| def get_input_embeddings(self): | |
| return self.language_model.get_input_embeddings() | |
| def set_input_embeddings(self, value): | |
| self.language_model.set_input_embeddings(value) | |
| def set_output_embeddings(self, new_embeddings): | |
| self.language_model.set_output_embeddings(new_embeddings) | |
| def get_output_embeddings(self) -> nn.Module: | |
| return self.language_model.get_output_embeddings() | |
| def get_encoder(self): | |
| return self.language_model.get_encoder() | |
| def get_decoder(self): | |
| return self.language_model.get_decoder() | |
| def _tie_weights(self): | |
| if not self.config.use_decoder_only_language_model: | |
| self.language_model.encoder.embed_tokens = self.language_model.shared | |
| self.language_model.decoder.embed_tokens = self.language_model.shared | |
| def get_text_features( | |
| self, | |
| input_ids: Optional[torch.Tensor] = None, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| decoder_input_ids: Optional[torch.Tensor] = None, | |
| decoder_attention_mask: Optional[torch.Tensor] = None, | |
| labels: Optional[torch.Tensor] = None, | |
| output_attentions: Optional[bool] = None, | |
| output_hidden_states: Optional[bool] = None, | |
| return_dict: Optional[bool] = None, | |
| ): | |
| output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
| output_hidden_states = ( | |
| output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
| ) | |
| return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
| if self.config.use_decoder_only_language_model: | |
| text_outputs = self.language_model( | |
| input_ids=input_ids, | |
| attention_mask=attention_mask, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| ) | |
| else: | |
| inputs_embeds = self.language_model.get_input_embeddings()(input_ids) | |
| text_outputs = self.language_model( | |
| inputs_embeds=inputs_embeds, | |
| attention_mask=attention_mask, | |
| decoder_input_ids=decoder_input_ids, | |
| decoder_attention_mask=decoder_attention_mask, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| labels=labels, | |
| ) | |
| return text_outputs | |
| def get_image_features( | |
| self, | |
| pixel_values: Optional[torch.FloatTensor] = None, | |
| output_attentions: Optional[bool] = None, | |
| output_hidden_states: Optional[bool] = None, | |
| return_dict: Optional[bool] = None, | |
| ): | |
| output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
| output_hidden_states = ( | |
| output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
| ) | |
| return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
| vision_outputs = self.vision_model( | |
| pixel_values=pixel_values, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| ) | |
| return vision_outputs | |
| def get_media_indices(my_list): | |
| if isinstance(my_list, torch.Tensor): | |
| my_list = my_list.cpu().tolist() | |
| result = [] | |
| for i in range(len(my_list)): | |
| if i == 0 and my_list[i] < 0: | |
| result.append(i) | |
| elif my_list[i] != my_list[i - 1] and my_list[i] < 0: | |
| result.append(i) | |
| return result | |
| def get_media_types(tensors, positions): | |
| if isinstance(tensors, torch.Tensor): | |
| tensors = tensors.cpu().tolist() | |
| result = [] | |
| for pos in positions: | |
| result.append(tensors[pos]) | |
| return result | |
| class MplugOwlForConditionalGeneration(MplugOwlPreTrainedModel): | |
| config_class = MplugOwlConfig | |
| main_input_name = "pixel_values" | |
| def __init__(self, config: MplugOwlConfig): | |
| super().__init__(config) | |
| self.vision_model = MplugOwlVisionModel(config.vision_config) | |
| self.query_tokens = nn.Parameter( | |
| torch.zeros(1, config.num_query_tokens, config.visual_abstractor_config.hidden_size) | |
| ) | |
| self.temporal_query_tokens = nn.Parameter( | |
| torch.zeros(1, config.num_query_tokens, config.visual_abstractor_config.hidden_size) | |
| ) | |
| self.abstractor = MplugOwlVisualAbstractorModel( | |
| config.visual_abstractor_config, config.text_config.hidden_size | |
| ) | |
| # if config.use_decoder_only_language_model: | |
| # from llama.modeling_llama import LlamaForCausalLM | |
| language_model = AutoModelForCausalLM.from_config(config.text_config) | |
| # else: | |
| # language_model = AutoModelForSeq2SeqLM.from_config(config.text_config) | |
| self.language_model = language_model | |
| # Initialize weights and apply final processing | |
| self.post_init() | |
| self.main_input_name = "input_ids" | |
| from transformers import GenerationConfig | |
| self.generation_config = GenerationConfig( | |
| max_length=512, do_sample=True, top_k=3, pad_token_id=0, unk_token_id=0, bos_token_id=1, eos_token_id=2 | |
| ) | |
| # Hack Bloom | |
| if config.text_config.model_type == 'bloom': | |
| bound_method = bloom_forward.__get__(self.language_model.transformer, self.language_model.transformer.__class__) | |
| setattr(self.language_model.transformer, 'forward', bound_method) | |
| def get_input_embeddings(self): | |
| return self.language_model.get_input_embeddings() | |
| def set_input_embeddings(self, value): | |
| self.language_model.set_input_embeddings(value) | |
| def set_output_embeddings(self, new_embeddings): | |
| self.language_model.set_output_embeddings(new_embeddings) | |
| def get_output_embeddings(self) -> nn.Module: | |
| return self.language_model.get_output_embeddings() | |
| def get_encoder(self): | |
| return self.language_model.get_encoder() | |
| def get_decoder(self): | |
| return self.language_model.get_decoder() | |
| def _tie_weights(self): | |
| if not self.config.use_decoder_only_language_model: | |
| self.language_model.encoder.embed_tokens = self.language_model.shared | |
| self.language_model.decoder.embed_tokens = self.language_model.shared | |
| def _preprocess_accelerate(self): | |
| r""" | |
| Some pre-processing hacks to make the model `accelerate` compatible. Check | |
| https://github.com/huggingface/transformers/pull/21707 for more details. | |
| """ | |
| hf_device_map = self.hf_device_map | |
| if len(hf_device_map) > 1 and "language_model" not in hf_device_map and torch.cuda.device_count() > 1: | |
| # warn users about unexpected behavior when using multi-GPU + mPLUG-Owl + `accelerate`. | |
| logger.warning( | |
| "The `language_model` is not in the `hf_device_map` dictionary and you are running your script" | |
| " in a multi-GPU environment. this may lead to unexpected behavior when using `accelerate`." | |
| " Please pass a `device_map` that contains `language_model` to remove this warning." | |
| " Please refer to https://github.com/huggingface/blog/blob/main/accelerate-large-models.md for" | |
| " more details on creating a `device_map` for large models.", | |
| ) | |
| if hasattr(self.language_model, "_hf_hook"): | |
| self.language_model._hf_hook.io_same_device = True # For `generate` compatibility | |
| def forward( | |
| self, | |
| pixel_values: torch.FloatTensor, | |
| video_pixel_values: torch.FloatTensor, | |
| input_ids: torch.FloatTensor, | |
| num_images, | |
| num_videos, | |
| non_padding_mask: Optional[torch.LongTensor] = None, | |
| non_media_mask: Optional[torch.LongTensor] = None, | |
| prompt_mask: Optional[torch.LongTensor] = None, | |
| attention_mask: Optional[torch.LongTensor] = None, | |
| decoder_input_ids: Optional[torch.LongTensor] = None, | |
| decoder_attention_mask: Optional[torch.LongTensor] = None, | |
| output_attentions: Optional[bool] = None, | |
| output_hidden_states: Optional[bool] = None, | |
| labels: Optional[torch.LongTensor] = None, | |
| return_dict: Optional[bool] = None, | |
| **forward_kwargs, | |
| ) -> Union[Tuple, MplugOwlForConditionalGenerationModelOutput]: | |
| r""" | |
| Returns: | |
| Examples: | |
| Image captioning (without providing a text prompt): | |
| ```python | |
| >>> from PIL import Image | |
| >>> import requests | |
| >>> from transformers import MplugOwlProcessor, MplugOwlForConditionalGeneration | |
| >>> import torch | |
| >>> device = "cuda" if torch.cuda.is_available() else "cpu" | |
| >>> processor = MplugOwlProcessor.from_pretrained("x-plug/x_plug-llama-7b") | |
| >>> model = MplugOwlForConditionalGeneration.from_pretrained( | |
| ... "x-plug/x_plug-llama-7b", torch_dtype=torch.float16 | |
| ... ) | |
| >>> model.to(device) # doctest: +IGNORE_RESULT | |
| >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" | |
| >>> image = Image.open(requests.get(url, stream=True).raw) | |
| >>> inputs = processor(images=image, return_tensors="pt").to(device, torch.float16) | |
| >>> generated_ids = model.generate(**inputs) | |
| >>> generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip() | |
| >>> print(generated_text) | |
| two cats laying on a couch | |
| ``` | |
| Visual question answering (prompt = question): | |
| ```python | |
| >>> from PIL import Image | |
| >>> import requests | |
| >>> from transformers import MplugOwlProcessor, MplugOwlForConditionalGeneration | |
| >>> import torch | |
| >>> device = "cuda" if torch.cuda.is_available() else "cpu" | |
| >>> processor = MplugOwlProcessor.from_pretrained("x-plug/x_plug-llama-7b") | |
| >>> model = MplugOwlForConditionalGeneration.from_pretrained( | |
| ... "x-plug/x_plug-llama-7b", torch_dtype=torch.float16 | |
| ... ) | |
| >>> model.to(device) # doctest: +IGNORE_RESULT | |
| >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" | |
| >>> image = Image.open(requests.get(url, stream=True).raw) | |
| >>> prompt = "Question: how many cats are there? Answer:" | |
| >>> inputs = processor(images=image, text=prompt, return_tensors="pt").to(device, torch.float16) | |
| >>> generated_ids = model.generate(**inputs) | |
| >>> generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip() | |
| >>> print(generated_text) | |
| two | |
| ```""" | |
| return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
| if attention_mask is None: | |
| attention_mask = input_ids.new_ones(*input_ids.shape) | |
| # get text embedding | |
| text_tokens_ = input_ids.clone() | |
| batch_size = input_ids.shape[0] | |
| media_token_indices = [ | |
| # [:-1] since we would not use the last token for embedding | |
| get_media_indices(text_tokens_[i][:-1]) | |
| for i in range(batch_size) | |
| ] | |
| media_token_types = [ | |
| get_media_types(text_tokens_[i][:-1], media_token_indices[i]) | |
| for i in range(batch_size) | |
| ] | |
| text_tokens_[text_tokens_ < 0] = 1 # Not used | |
| inputs_embeds = self.get_input_embeddings()(text_tokens_) # Temporally Embedding | |
| if hasattr(self.language_model, 'transformer') and hasattr(self.language_model.transformer, 'word_embeddings_layernorm'): | |
| inputs_embeds = self.language_model.transformer.word_embeddings_layernorm(inputs_embeds) | |
| if pixel_values is not None: | |
| image_embeds = self.vision_model(pixel_values, return_dict=True).last_hidden_state | |
| image_attention_mask = torch.ones(image_embeds.size()[:-1], dtype=torch.long, device=image_embeds.device) | |
| query_tokens = self.query_tokens.expand(image_embeds.shape[0], -1, -1) | |
| temporal_query_tokens = self.temporal_query_tokens.expand(image_embeds.shape[0], -1, -1) | |
| query_features = self.abstractor( | |
| query_embeds=query_tokens, | |
| encoder_hidden_states=image_embeds, | |
| encoder_attention_mask=image_attention_mask, | |
| )["last_hidden_state"] | |
| img_seq_length = query_features.shape[1] | |
| if video_pixel_values is not None: | |
| video_embeds = self.vision_model(video_pixel_values, return_dict=True).last_hidden_state | |
| video_attention_mask = torch.ones(video_embeds.size()[:-1], dtype=torch.long, device=video_embeds.device) | |
| video_attention_mask = einops.rearrange( | |
| video_attention_mask, 'b t n -> b (t n)' | |
| ) | |
| query_tokens = self.query_tokens.expand(video_embeds.shape[0], -1, -1) | |
| temporal_query_tokens = self.temporal_query_tokens.expand(video_embeds.shape[0], -1, -1) | |
| video_query_features = self.abstractor( | |
| query_embeds=query_tokens, | |
| temporal_query_embeds=temporal_query_tokens, | |
| encoder_hidden_states=video_embeds, | |
| encoder_attention_mask=video_attention_mask, | |
| )["last_hidden_state"] | |
| video_embeds = video_query_features | |
| vid_seq_length = video_query_features.shape[1] | |
| num_images_per_sample = num_images.long().cpu().tolist() | |
| num_videos_per_sample = num_videos.long().cpu().tolist() | |
| text_chunk_embeds = [] | |
| text_chunk_attns = [] | |
| img_idx = 0 | |
| vid_idx = 0 | |
| for b in range(batch_size): | |
| start = 0 | |
| result = [] | |
| result_attn = [] | |
| for i, pos in enumerate(media_token_indices[b]): | |
| curr_image_idx, curr_video_idx = 0, 0 | |
| if pos > start: | |
| result.append(inputs_embeds[b, start:pos]) | |
| result_attn.append(attention_mask[b, start:pos]) | |
| if media_token_types[b][i] == -1: | |
| result.append(image_embeds[img_idx + curr_image_idx]) | |
| result_attn.append(torch.ones(image_embeds[img_idx + curr_image_idx].shape[0], device=inputs_embeds.device)) | |
| start = pos + img_seq_length | |
| curr_image_idx += 1 | |
| else: | |
| result.append(video_embeds[vid_idx + curr_video_idx]) | |
| result_attn.append(torch.ones(video_embeds[vid_idx + curr_video_idx].shape[0], device=inputs_embeds.device)) | |
| start = pos + vid_seq_length | |
| curr_video_idx += 1 | |
| if start < inputs_embeds.shape[1]: | |
| result.append(inputs_embeds[b, start:]) | |
| result_attn.append(attention_mask[b, start:]) | |
| img_idx += num_images_per_sample[b] | |
| vid_idx += num_videos_per_sample[b] | |
| text_chunk_embeds.append(torch.cat(result, dim=0)) | |
| text_chunk_attns.append(torch.cat(result_attn, dim=0)) | |
| inputs_embeds = torch.stack(text_chunk_embeds, dim=0) | |
| attention_mask = torch.stack(text_chunk_attns, dim=0) | |
| if labels is not None: | |
| # Create causal mask and position ids | |
| _, loss_mask, position_ids = get_ltor_masks_and_position_ids_from_embeddings(inputs_embeds) | |
| # Calculate the loss_mask | |
| non_padding_mask = non_padding_mask.long() | |
| non_media_mask = non_media_mask.long() | |
| prompt_mask = prompt_mask.long() # TODO How to deal with prompt mask | |
| loss_mask = loss_mask[:, :-1] | |
| loss_mask = loss_mask * non_padding_mask * non_media_mask * prompt_mask | |
| labels[:, 1:][loss_mask != 1] = -100 | |
| # Forward into GPT | |
| outputs = self.language_model( | |
| inputs_embeds=inputs_embeds, | |
| attention_mask=attention_mask, | |
| labels=labels, | |
| return_dict=return_dict, | |
| output_attentions=self.config.output_attentions, | |
| ) | |
| return outputs | |
| def generate( | |
| self, | |
| pixel_values: torch.FloatTensor = None, | |
| video_pixel_values: torch.FloatTensor = None, | |
| input_ids: Optional[torch.LongTensor] = None, | |
| attention_mask: Optional[torch.LongTensor] = None, | |
| isdecoder=True, | |
| get_logits_only=False, | |
| **generate_kwargs, | |
| ) -> torch.LongTensor: | |
| """ | |
| Overrides `generate` function to be able to use the model as a conditional generator. | |
| Args: | |
| pixel_values (`torch.FloatTensor` of shape (batch_size, num_channels, height, width)): | |
| Input images to be processed. | |
| input_ids (`torch.LongTensor` of shape (batch_size, sequence_length), *optional*): | |
| The sequence used as a prompt for the generation. | |
| attention_mask (`torch.LongTensor` of shape (batch_size, sequence_length), *optional*): | |
| Mask to avoid performing attention on padding token indices | |
| Returns: | |
| captions (list): A list of strings of length batch_size * num_captions. | |
| """ | |
| if input_ids is None: | |
| return self.language_model.generate(attention_mask=attention_mask, **generate_kwargs) | |
| if attention_mask is None: | |
| attention_mask = input_ids.new_ones(*input_ids.shape) | |
| batch_size = input_ids.size(0) | |
| media_token_indices = [get_media_indices(input_ids[i]) for i in range(batch_size)] | |
| media_token_types = [ | |
| get_media_types(input_ids[i], media_token_indices[i]) | |
| for i in range(batch_size) | |
| ] | |
| num_images_per_sample = [len([y for y in x if y==-1]) for x in media_token_types] | |
| num_videos_per_sample = [len([y for y in x if y<-1]) for x in media_token_types] | |
| input_ids = input_ids.clone() # prevent inplace modify | |
| input_ids[input_ids < 0] = 0 # Not used | |
| if hasattr(self, "hf_device_map"): | |
| # preprocess for `accelerate` | |
| self._preprocess_accelerate() | |
| batch_size = input_ids.shape[0] | |
| # get text embedding | |
| inputs_embeds = self.get_input_embeddings()(input_ids) | |
| if hasattr(self.language_model, 'transformer') and hasattr(self.language_model.transformer, 'word_embeddings_layernorm'): | |
| inputs_embeds = self.language_model.transformer.word_embeddings_layernorm(inputs_embeds) | |
| # get visual embedding | |
| if pixel_values is not None: | |
| pixel_values = pixel_values.to(input_ids.device) | |
| with torch.no_grad(): | |
| image_embeds = self.vision_model(pixel_values, return_dict=True).last_hidden_state | |
| image_attention_mask = torch.ones( | |
| image_embeds.size()[:-1], dtype=torch.long, device=image_embeds.device | |
| ) | |
| query_tokens = self.query_tokens.expand(image_embeds.shape[0], -1, -1) | |
| query_outputs = self.abstractor( | |
| query_embeds=query_tokens, | |
| encoder_hidden_states=image_embeds, | |
| encoder_attention_mask=image_attention_mask, | |
| return_dict=True, | |
| ) | |
| query_output = query_outputs["last_hidden_state"] | |
| image_embeds = query_output | |
| img_seq_length = image_embeds.shape[1] | |
| if video_pixel_values is not None: | |
| video_pixel_values = video_pixel_values.to(input_ids.device) | |
| with torch.no_grad(): | |
| video_embeds = self.vision_model(video_pixel_values, return_dict=True).last_hidden_state | |
| video_attention_mask = torch.ones( | |
| video_embeds.size()[:-1], dtype=torch.long, device=video_embeds.device | |
| ) | |
| video_attention_mask = einops.rearrange( | |
| video_attention_mask, 'b t n -> b (t n)' | |
| ) | |
| query_tokens = self.query_tokens.expand(video_embeds.shape[0], -1, -1) | |
| temporal_query_tokens = self.temporal_query_tokens.expand(video_embeds.shape[0], -1, -1) | |
| query_outputs = self.abstractor( | |
| query_embeds=query_tokens, | |
| temporal_query_embeds=temporal_query_tokens, | |
| encoder_hidden_states=video_embeds, | |
| encoder_attention_mask=video_attention_mask, | |
| return_dict=True, | |
| ) | |
| query_output = query_outputs["last_hidden_state"] | |
| video_embeds = query_output | |
| vid_seq_length = video_embeds.shape[1] | |
| # =================== | |
| # Get actual input embeddings | |
| # =================== | |
| text_chunk_embeds = [] | |
| text_chunk_attns = [] | |
| img_idx = 0 | |
| vid_idx = 0 | |
| for b in range(batch_size): | |
| start = 0 | |
| result = [] | |
| result_attn = [] | |
| for i, pos in enumerate(media_token_indices[b]): | |
| curr_image_idx, curr_video_idx = 0, 0 | |
| if pos > start: | |
| result.append(inputs_embeds[b, start:pos]) | |
| result_attn.append(attention_mask[b, start:pos]) | |
| if media_token_types[b][i] == -1: | |
| result.append(image_embeds[img_idx + curr_image_idx]) | |
| result_attn.append(torch.ones(image_embeds[img_idx + curr_image_idx].shape[0], device=inputs_embeds.device)) | |
| start = pos + img_seq_length | |
| curr_image_idx += 1 | |
| else: | |
| result.append(video_embeds[vid_idx + curr_video_idx]) | |
| result_attn.append(torch.ones(video_embeds[vid_idx + curr_video_idx].shape[0], device=inputs_embeds.device)) | |
| start = pos + vid_seq_length | |
| curr_video_idx += 1 | |
| if start < inputs_embeds.shape[1]: | |
| result.append(inputs_embeds[b, start:]) | |
| result_attn.append(attention_mask[b, start:]) | |
| img_idx += num_images_per_sample[b] | |
| vid_idx += num_videos_per_sample[b] | |
| text_chunk_embeds.append(torch.cat(result, dim=0)) | |
| text_chunk_attns.append(torch.cat(result_attn, dim=0)) | |
| inputs_embeds = torch.stack(text_chunk_embeds, dim=0) | |
| attention_mask = torch.stack(text_chunk_attns, dim=0) | |
| if get_logits_only: | |
| outputs = self.language_model( | |
| inputs_embeds=inputs_embeds, | |
| attention_mask=attention_mask, | |
| return_dict=True, | |
| output_attentions=self.config.output_attentions, | |
| ) | |
| else: | |
| outputs = self.language_model.generate( | |
| inputs_embeds=inputs_embeds, | |
| attention_mask=attention_mask, | |
| **generate_kwargs, | |
| ) | |
| return outputs | |
| def prepare_inputs_for_generation( | |
| self, input_ids, pixel_values=None, video_pixel_values=None, | |
| past_key_values=None, attention_mask=None, **model_kwargs | |
| ): | |
| input_shape = input_ids.shape | |
| # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly | |
| if attention_mask is None: | |
| attention_mask = input_ids.new_ones(input_shape) | |
| # # cut decoder_input_ids if past_key_values is used | |
| # if past_key_values is not None: | |
| # input_ids = input_ids[:, -1:] | |
| return { | |
| "input_ids": input_ids, | |
| "pixel_values": pixel_values, | |
| "video_pixel_values": video_pixel_values, | |
| "attention_mask": attention_mask, | |
| # "past_key_values": past_key_values, | |
| # "encoder_hidden_states": model_kwargs.get("encoder_hidden_states", None), | |
| # "encoder_attention_mask": model_kwargs.get("encoder_attention_mask", None), | |
| "is_decoder": True, | |
| } | |
| def bloom_forward( | |
| self, | |
| input_ids: Optional[torch.LongTensor] = None, | |
| past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| head_mask: Optional[torch.LongTensor] = None, | |
| inputs_embeds: Optional[torch.LongTensor] = None, | |
| use_cache: Optional[bool] = None, | |
| output_attentions: Optional[bool] = None, | |
| output_hidden_states: Optional[bool] = None, | |
| return_dict: Optional[bool] = None, | |
| **deprecated_arguments, | |
| ) -> Union[Tuple[torch.Tensor, ...], BaseModelOutputWithPastAndCrossAttentions]: | |
| if deprecated_arguments.pop("position_ids", False) is not False: | |
| # `position_ids` could have been `torch.Tensor` or `None` so defaulting pop to `False` allows to detect if users were passing explicitly `None` | |
| warnings.warn( | |
| "`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. You can safely ignore" | |
| " passing `position_ids`.", | |
| FutureWarning, | |
| ) | |
| if len(deprecated_arguments) > 0: | |
| raise ValueError(f"Got unexpected arguments: {deprecated_arguments}") | |
| output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
| output_hidden_states = ( | |
| output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
| ) | |
| use_cache = use_cache if use_cache is not None else self.config.use_cache | |
| return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
| if input_ids is not None and inputs_embeds is not None: | |
| raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") | |
| elif input_ids is not None: | |
| batch_size, seq_length = input_ids.shape | |
| elif inputs_embeds is not None: | |
| batch_size, seq_length, _ = inputs_embeds.shape | |
| else: | |
| raise ValueError("You have to specify either input_ids or inputs_embeds") | |
| if past_key_values is None: | |
| past_key_values = tuple([None] * len(self.h)) | |
| # Prepare head mask if needed | |
| # 1.0 in head_mask indicate we keep the head | |
| # attention_probs has shape batch_size x num_heads x N x N | |
| # head_mask has shape n_layer x batch x num_heads x N x N | |
| head_mask = self.get_head_mask(head_mask, self.config.n_layer) | |
| if inputs_embeds is None: | |
| inputs_embeds = self.word_embeddings(input_ids) | |
| inputs_embeds = self.word_embeddings_layernorm(inputs_embeds) | |
| hidden_states = inputs_embeds | |
| presents = () if use_cache else None | |
| all_self_attentions = () if output_attentions else None | |
| all_hidden_states = () if output_hidden_states else None | |
| if self.gradient_checkpointing and self.training: | |
| if use_cache: | |
| logger.warning_once( | |
| "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." | |
| ) | |
| use_cache = False | |
| # Compute alibi tensor: check build_alibi_tensor documentation | |
| seq_length_with_past = seq_length | |
| past_key_values_length = 0 | |
| if past_key_values[0] is not None: | |
| past_key_values_length = past_key_values[0][0].shape[2] | |
| seq_length_with_past = seq_length_with_past + past_key_values_length | |
| if attention_mask is None: | |
| attention_mask = torch.ones((batch_size, seq_length_with_past), device=hidden_states.device) | |
| else: | |
| attention_mask = attention_mask.to(hidden_states.device) | |
| alibi = self.build_alibi_tensor(attention_mask, self.num_heads, dtype=hidden_states.dtype) | |
| causal_mask = self._prepare_attn_mask( | |
| attention_mask, | |
| input_shape=(batch_size, seq_length), | |
| past_key_values_length=past_key_values_length, | |
| ) | |
| for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)): | |
| if output_hidden_states: | |
| all_hidden_states = all_hidden_states + (hidden_states,) | |
| if self.gradient_checkpointing and self.training: | |
| def create_custom_forward(module): | |
| def custom_forward(*inputs): | |
| # None for past_key_value | |
| return module(*inputs, use_cache=use_cache, output_attentions=output_attentions) | |
| return custom_forward | |
| outputs = torch.utils.checkpoint.checkpoint( | |
| create_custom_forward(block), | |
| hidden_states, | |
| alibi, | |
| causal_mask, | |
| layer_past, | |
| head_mask[i], | |
| ) | |
| else: | |
| outputs = block( | |
| hidden_states, | |
| layer_past=layer_past, | |
| attention_mask=causal_mask, | |
| head_mask=head_mask[i], | |
| use_cache=use_cache, | |
| output_attentions=output_attentions, | |
| alibi=alibi, | |
| ) | |
| hidden_states = outputs[0] | |
| if use_cache is True: | |
| presents = presents + (outputs[1],) | |
| if output_attentions: | |
| all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],) | |
| # Add last hidden state | |
| hidden_states = self.ln_f(hidden_states) | |
| if output_hidden_states: | |
| all_hidden_states = all_hidden_states + (hidden_states,) | |
| if not return_dict: | |
| return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None) | |
| return BaseModelOutputWithPastAndCrossAttentions( | |
| last_hidden_state=hidden_states, | |
| past_key_values=presents, | |
| hidden_states=all_hidden_states, | |
| attentions=all_self_attentions, | |
| ) |