Spaces:
Running
Running
play around with finetunning
Browse files
finetuning-functiongemma/README.md
ADDED
|
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Fine-tuning FunctionGemma for Square Color Control
|
| 2 |
+
|
| 3 |
+
This directory contains everything needed to fine-tune FunctionGemma to recognize square color control commands.
|
| 4 |
+
|
| 5 |
+
## π Overview
|
| 6 |
+
|
| 7 |
+
FunctionGemma is a base model that requires fine-tuning to work well with custom functions. This project demonstrates:
|
| 8 |
+
|
| 9 |
+
1. **Dataset creation** for function calling
|
| 10 |
+
2. **Fine-tuning with LoRA** using HuggingFace TRL
|
| 11 |
+
3. **Export to ONNX** for browser use
|
| 12 |
+
4. **Deploy to Hugging Face Hub**
|
| 13 |
+
|
| 14 |
+
## π Quick Start
|
| 15 |
+
|
| 16 |
+
### Option 1: Google Colab (Recommended)
|
| 17 |
+
1. Upload the entire `finetuning-functiongemma/` folder to [Google Colab](https://colab.research.google.com)
|
| 18 |
+
2. Open the notebook `finetune_functiongemma.ipynb`
|
| 19 |
+
3. Select GPU runtime (T4 is sufficient)
|
| 20 |
+
4. Run all cells
|
| 21 |
+
|
| 22 |
+
> **Note:** The notebook loads the dataset from `dataset/square_color_dataset.json`, so make sure to keep the folder structure intact.
|
| 23 |
+
|
| 24 |
+
### Option 2: Hugging Face Spaces
|
| 25 |
+
1. Create a new Space with the Gradio template
|
| 26 |
+
2. Configure a GPU Space (if needed)
|
| 27 |
+
3. Use the notebook inside the Space
|
| 28 |
+
|
| 29 |
+
## π Structure
|
| 30 |
+
|
| 31 |
+
```
|
| 32 |
+
finetuning-functiongemma/
|
| 33 |
+
βββ README.md # This file
|
| 34 |
+
βββ finetune_functiongemma.ipynb # Main notebook
|
| 35 |
+
βββ dataset/
|
| 36 |
+
β βββ square_color_dataset.json # Training dataset
|
| 37 |
+
βββ export_to_onnx.py # Script to convert to ONNX
|
| 38 |
+
```
|
| 39 |
+
|
| 40 |
+
## π― Target Functions
|
| 41 |
+
|
| 42 |
+
The model will be trained to recognize two functions:
|
| 43 |
+
|
| 44 |
+
### `set_square_color`
|
| 45 |
+
Changes the square color to a new color.
|
| 46 |
+
|
| 47 |
+
**Example inputs:**
|
| 48 |
+
- "Change the color to blue"
|
| 49 |
+
- "Make it red"
|
| 50 |
+
- "Set the square to green"
|
| 51 |
+
|
| 52 |
+
### `get_square_color`
|
| 53 |
+
Returns the current color of the square.
|
| 54 |
+
|
| 55 |
+
**Example inputs:**
|
| 56 |
+
- "What color is the square?"
|
| 57 |
+
- "Tell me the current color"
|
| 58 |
+
- "Which color is it?"
|
| 59 |
+
|
| 60 |
+
## π Dataset
|
| 61 |
+
|
| 62 |
+
The dataset contains varied examples in English, including:
|
| 63 |
+
- Direct commands ("set to red")
|
| 64 |
+
- Indirect commands ("I want it blue")
|
| 65 |
+
- Questions ("what color?")
|
| 66 |
+
- Natural language variations
|
| 67 |
+
|
| 68 |
+
## π§ Requirements
|
| 69 |
+
|
| 70 |
+
```bash
|
| 71 |
+
pip install torch transformers datasets trl accelerate
|
| 72 |
+
pip install optimum[onnxruntime] # For ONNX export
|
| 73 |
+
```
|
| 74 |
+
|
| 75 |
+
## π Important Notes
|
| 76 |
+
|
| 77 |
+
1. **GPU Required**: Fine-tuning requires GPU (minimum T4)
|
| 78 |
+
2. **Time**: ~10-15 minutes with 60 examples and 8 epochs
|
| 79 |
+
3. **Format**: The model uses special `<escape>` tokens for strings
|
| 80 |
+
|
| 81 |
+
## π Useful Links
|
| 82 |
+
|
| 83 |
+
- [FunctionGemma Docs](https://ai.google.dev/gemma/docs/functiongemma)
|
| 84 |
+
- [Official Fine-tuning Tutorial](https://ai.google.dev/gemma/docs/functiongemma/finetuning-with-functiongemma)
|
| 85 |
+
- [HuggingFace TRL](https://huggingface.co/docs/trl)
|
| 86 |
+
|
| 87 |
+
## Author
|
| 88 |
+
|
| 89 |
+
Created as an AI Engineering portfolio project.
|
finetuning-functiongemma/dataset/square_color_dataset.json
ADDED
|
@@ -0,0 +1,969 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"user_content": "Change the color to blue",
|
| 4 |
+
"tool_name": "set_square_color",
|
| 5 |
+
"tool_arguments": "{\"color\": \"blue\"}"
|
| 6 |
+
},
|
| 7 |
+
{
|
| 8 |
+
"user_content": "What color is the square?",
|
| 9 |
+
"tool_name": "get_square_color",
|
| 10 |
+
"tool_arguments": "{}"
|
| 11 |
+
},
|
| 12 |
+
{
|
| 13 |
+
"user_content": "Make it red",
|
| 14 |
+
"tool_name": "set_square_color",
|
| 15 |
+
"tool_arguments": "{\"color\": \"red\"}"
|
| 16 |
+
},
|
| 17 |
+
{
|
| 18 |
+
"user_content": "Tell me the current color",
|
| 19 |
+
"tool_name": "get_square_color",
|
| 20 |
+
"tool_arguments": "{}"
|
| 21 |
+
},
|
| 22 |
+
{
|
| 23 |
+
"user_content": "Set the square to green",
|
| 24 |
+
"tool_name": "set_square_color",
|
| 25 |
+
"tool_arguments": "{\"color\": \"green\"}"
|
| 26 |
+
},
|
| 27 |
+
{
|
| 28 |
+
"user_content": "Which color is it?",
|
| 29 |
+
"tool_name": "get_square_color",
|
| 30 |
+
"tool_arguments": "{}"
|
| 31 |
+
},
|
| 32 |
+
{
|
| 33 |
+
"user_content": "I want the square to be purple",
|
| 34 |
+
"tool_name": "set_square_color",
|
| 35 |
+
"tool_arguments": "{\"color\": \"purple\"}"
|
| 36 |
+
},
|
| 37 |
+
{
|
| 38 |
+
"user_content": "What's the color right now?",
|
| 39 |
+
"tool_name": "get_square_color",
|
| 40 |
+
"tool_arguments": "{}"
|
| 41 |
+
},
|
| 42 |
+
{
|
| 43 |
+
"user_content": "Turn it yellow",
|
| 44 |
+
"tool_name": "set_square_color",
|
| 45 |
+
"tool_arguments": "{\"color\": \"yellow\"}"
|
| 46 |
+
},
|
| 47 |
+
{
|
| 48 |
+
"user_content": "Can you tell me what color the square is?",
|
| 49 |
+
"tool_name": "get_square_color",
|
| 50 |
+
"tool_arguments": "{}"
|
| 51 |
+
},
|
| 52 |
+
{
|
| 53 |
+
"user_content": "Paint it orange",
|
| 54 |
+
"tool_name": "set_square_color",
|
| 55 |
+
"tool_arguments": "{\"color\": \"orange\"}"
|
| 56 |
+
},
|
| 57 |
+
{
|
| 58 |
+
"user_content": "I'd like to know the current color",
|
| 59 |
+
"tool_name": "get_square_color",
|
| 60 |
+
"tool_arguments": "{}"
|
| 61 |
+
},
|
| 62 |
+
{
|
| 63 |
+
"user_content": "Switch to pink",
|
| 64 |
+
"tool_name": "set_square_color",
|
| 65 |
+
"tool_arguments": "{\"color\": \"pink\"}"
|
| 66 |
+
},
|
| 67 |
+
{
|
| 68 |
+
"user_content": "What is the square's color?",
|
| 69 |
+
"tool_name": "get_square_color",
|
| 70 |
+
"tool_arguments": "{}"
|
| 71 |
+
},
|
| 72 |
+
{
|
| 73 |
+
"user_content": "Make the square cyan",
|
| 74 |
+
"tool_name": "set_square_color",
|
| 75 |
+
"tool_arguments": "{\"color\": \"cyan\"}"
|
| 76 |
+
},
|
| 77 |
+
{
|
| 78 |
+
"user_content": "Show me the color",
|
| 79 |
+
"tool_name": "get_square_color",
|
| 80 |
+
"tool_arguments": "{}"
|
| 81 |
+
},
|
| 82 |
+
{
|
| 83 |
+
"user_content": "I want it to be white",
|
| 84 |
+
"tool_name": "set_square_color",
|
| 85 |
+
"tool_arguments": "{\"color\": \"white\"}"
|
| 86 |
+
},
|
| 87 |
+
{
|
| 88 |
+
"user_content": "What color is it set to?",
|
| 89 |
+
"tool_name": "get_square_color",
|
| 90 |
+
"tool_arguments": "{}"
|
| 91 |
+
},
|
| 92 |
+
{
|
| 93 |
+
"user_content": "Change to black",
|
| 94 |
+
"tool_name": "set_square_color",
|
| 95 |
+
"tool_arguments": "{\"color\": \"black\"}"
|
| 96 |
+
},
|
| 97 |
+
{
|
| 98 |
+
"user_content": "Tell me the color of the square",
|
| 99 |
+
"tool_name": "get_square_color",
|
| 100 |
+
"tool_arguments": "{}"
|
| 101 |
+
},
|
| 102 |
+
{
|
| 103 |
+
"user_content": "Set it to teal",
|
| 104 |
+
"tool_name": "set_square_color",
|
| 105 |
+
"tool_arguments": "{\"color\": \"teal\"}"
|
| 106 |
+
},
|
| 107 |
+
{
|
| 108 |
+
"user_content": "Query the current color",
|
| 109 |
+
"tool_name": "get_square_color",
|
| 110 |
+
"tool_arguments": "{}"
|
| 111 |
+
},
|
| 112 |
+
{
|
| 113 |
+
"user_content": "Make it magenta",
|
| 114 |
+
"tool_name": "set_square_color",
|
| 115 |
+
"tool_arguments": "{\"color\": \"magenta\"}"
|
| 116 |
+
},
|
| 117 |
+
{
|
| 118 |
+
"user_content": "Get the color",
|
| 119 |
+
"tool_name": "get_square_color",
|
| 120 |
+
"tool_arguments": "{}"
|
| 121 |
+
},
|
| 122 |
+
{
|
| 123 |
+
"user_content": "I'd like the square to be lime",
|
| 124 |
+
"tool_name": "set_square_color",
|
| 125 |
+
"tool_arguments": "{\"color\": \"lime\"}"
|
| 126 |
+
},
|
| 127 |
+
{
|
| 128 |
+
"user_content": "Read the current color",
|
| 129 |
+
"tool_name": "get_square_color",
|
| 130 |
+
"tool_arguments": "{}"
|
| 131 |
+
},
|
| 132 |
+
{
|
| 133 |
+
"user_content": "Update the color to navy",
|
| 134 |
+
"tool_name": "set_square_color",
|
| 135 |
+
"tool_arguments": "{\"color\": \"navy\"}"
|
| 136 |
+
},
|
| 137 |
+
{
|
| 138 |
+
"user_content": "Check the square color",
|
| 139 |
+
"tool_name": "get_square_color",
|
| 140 |
+
"tool_arguments": "{}"
|
| 141 |
+
},
|
| 142 |
+
{
|
| 143 |
+
"user_content": "Set color to coral",
|
| 144 |
+
"tool_name": "set_square_color",
|
| 145 |
+
"tool_arguments": "{\"color\": \"coral\"}"
|
| 146 |
+
},
|
| 147 |
+
{
|
| 148 |
+
"user_content": "What color do we have?",
|
| 149 |
+
"tool_name": "get_square_color",
|
| 150 |
+
"tool_arguments": "{}"
|
| 151 |
+
},
|
| 152 |
+
{
|
| 153 |
+
"user_content": "Put it in violet",
|
| 154 |
+
"tool_name": "set_square_color",
|
| 155 |
+
"tool_arguments": "{\"color\": \"violet\"}"
|
| 156 |
+
},
|
| 157 |
+
{
|
| 158 |
+
"user_content": "Display the color",
|
| 159 |
+
"tool_name": "get_square_color",
|
| 160 |
+
"tool_arguments": "{}"
|
| 161 |
+
},
|
| 162 |
+
{
|
| 163 |
+
"user_content": "Color it gold",
|
| 164 |
+
"tool_name": "set_square_color",
|
| 165 |
+
"tool_arguments": "{\"color\": \"gold\"}"
|
| 166 |
+
},
|
| 167 |
+
{
|
| 168 |
+
"user_content": "Fetch the current color",
|
| 169 |
+
"tool_name": "get_square_color",
|
| 170 |
+
"tool_arguments": "{}"
|
| 171 |
+
},
|
| 172 |
+
{
|
| 173 |
+
"user_content": "Apply salmon color",
|
| 174 |
+
"tool_name": "set_square_color",
|
| 175 |
+
"tool_arguments": "{\"color\": \"salmon\"}"
|
| 176 |
+
},
|
| 177 |
+
{
|
| 178 |
+
"user_content": "Return the color value",
|
| 179 |
+
"tool_name": "get_square_color",
|
| 180 |
+
"tool_arguments": "{}"
|
| 181 |
+
},
|
| 182 |
+
{
|
| 183 |
+
"user_content": "Use turquoise",
|
| 184 |
+
"tool_name": "set_square_color",
|
| 185 |
+
"tool_arguments": "{\"color\": \"turquoise\"}"
|
| 186 |
+
},
|
| 187 |
+
{
|
| 188 |
+
"user_content": "What's the current state of the color?",
|
| 189 |
+
"tool_name": "get_square_color",
|
| 190 |
+
"tool_arguments": "{}"
|
| 191 |
+
},
|
| 192 |
+
{
|
| 193 |
+
"user_content": "Modify the square to crimson",
|
| 194 |
+
"tool_name": "set_square_color",
|
| 195 |
+
"tool_arguments": "{\"color\": \"crimson\"}"
|
| 196 |
+
},
|
| 197 |
+
{
|
| 198 |
+
"user_content": "Retrieve the square's color",
|
| 199 |
+
"tool_name": "get_square_color",
|
| 200 |
+
"tool_arguments": "{}"
|
| 201 |
+
},
|
| 202 |
+
{
|
| 203 |
+
"user_content": "Please change to blue",
|
| 204 |
+
"tool_name": "set_square_color",
|
| 205 |
+
"tool_arguments": "{\"color\": \"blue\"}"
|
| 206 |
+
},
|
| 207 |
+
{
|
| 208 |
+
"user_content": "Could you tell me the color?",
|
| 209 |
+
"tool_name": "get_square_color",
|
| 210 |
+
"tool_arguments": "{}"
|
| 211 |
+
},
|
| 212 |
+
{
|
| 213 |
+
"user_content": "I need it red",
|
| 214 |
+
"tool_name": "set_square_color",
|
| 215 |
+
"tool_arguments": "{\"color\": \"red\"}"
|
| 216 |
+
},
|
| 217 |
+
{
|
| 218 |
+
"user_content": "What is the current color?",
|
| 219 |
+
"tool_name": "get_square_color",
|
| 220 |
+
"tool_arguments": "{}"
|
| 221 |
+
},
|
| 222 |
+
{
|
| 223 |
+
"user_content": "Let's make it green",
|
| 224 |
+
"tool_name": "set_square_color",
|
| 225 |
+
"tool_arguments": "{\"color\": \"green\"}"
|
| 226 |
+
},
|
| 227 |
+
{
|
| 228 |
+
"user_content": "Can you get the color?",
|
| 229 |
+
"tool_name": "get_square_color",
|
| 230 |
+
"tool_arguments": "{}"
|
| 231 |
+
},
|
| 232 |
+
{
|
| 233 |
+
"user_content": "Go with purple",
|
| 234 |
+
"tool_name": "set_square_color",
|
| 235 |
+
"tool_arguments": "{\"color\": \"purple\"}"
|
| 236 |
+
},
|
| 237 |
+
{
|
| 238 |
+
"user_content": "I want to know the color",
|
| 239 |
+
"tool_name": "get_square_color",
|
| 240 |
+
"tool_arguments": "{}"
|
| 241 |
+
},
|
| 242 |
+
{
|
| 243 |
+
"user_content": "How about yellow?",
|
| 244 |
+
"tool_name": "set_square_color",
|
| 245 |
+
"tool_arguments": "{\"color\": \"yellow\"}"
|
| 246 |
+
},
|
| 247 |
+
{
|
| 248 |
+
"user_content": "Give me the color info",
|
| 249 |
+
"tool_name": "get_square_color",
|
| 250 |
+
"tool_arguments": "{}"
|
| 251 |
+
},
|
| 252 |
+
{
|
| 253 |
+
"user_content": "Try orange",
|
| 254 |
+
"tool_name": "set_square_color",
|
| 255 |
+
"tool_arguments": "{\"color\": \"orange\"}"
|
| 256 |
+
},
|
| 257 |
+
{
|
| 258 |
+
"user_content": "Report the current color",
|
| 259 |
+
"tool_name": "get_square_color",
|
| 260 |
+
"tool_arguments": "{}"
|
| 261 |
+
},
|
| 262 |
+
{
|
| 263 |
+
"user_content": "Let's go with pink",
|
| 264 |
+
"tool_name": "set_square_color",
|
| 265 |
+
"tool_arguments": "{\"color\": \"pink\"}"
|
| 266 |
+
},
|
| 267 |
+
{
|
| 268 |
+
"user_content": "What's the square showing?",
|
| 269 |
+
"tool_name": "get_square_color",
|
| 270 |
+
"tool_arguments": "{}"
|
| 271 |
+
},
|
| 272 |
+
{
|
| 273 |
+
"user_content": "Change it to brown",
|
| 274 |
+
"tool_name": "set_square_color",
|
| 275 |
+
"tool_arguments": "{\"color\": \"brown\"}"
|
| 276 |
+
},
|
| 277 |
+
{
|
| 278 |
+
"user_content": "Tell me what color it is",
|
| 279 |
+
"tool_name": "get_square_color",
|
| 280 |
+
"tool_arguments": "{}"
|
| 281 |
+
},
|
| 282 |
+
{
|
| 283 |
+
"user_content": "Set to silver",
|
| 284 |
+
"tool_name": "set_square_color",
|
| 285 |
+
"tool_arguments": "{\"color\": \"silver\"}"
|
| 286 |
+
},
|
| 287 |
+
{
|
| 288 |
+
"user_content": "Check what color the square is",
|
| 289 |
+
"tool_name": "get_square_color",
|
| 290 |
+
"tool_arguments": "{}"
|
| 291 |
+
},
|
| 292 |
+
{
|
| 293 |
+
"user_content": "Make the color maroon",
|
| 294 |
+
"tool_name": "set_square_color",
|
| 295 |
+
"tool_arguments": "{\"color\": \"maroon\"}"
|
| 296 |
+
},
|
| 297 |
+
{
|
| 298 |
+
"user_content": "Show current color",
|
| 299 |
+
"tool_name": "get_square_color",
|
| 300 |
+
"tool_arguments": "{}"
|
| 301 |
+
},
|
| 302 |
+
{
|
| 303 |
+
"user_content": "blue",
|
| 304 |
+
"tool_name": "set_square_color",
|
| 305 |
+
"tool_arguments": "{\"color\": \"blue\"}"
|
| 306 |
+
},
|
| 307 |
+
{
|
| 308 |
+
"user_content": "red please",
|
| 309 |
+
"tool_name": "set_square_color",
|
| 310 |
+
"tool_arguments": "{\"color\": \"red\"}"
|
| 311 |
+
},
|
| 312 |
+
{
|
| 313 |
+
"user_content": "green!",
|
| 314 |
+
"tool_name": "set_square_color",
|
| 315 |
+
"tool_arguments": "{\"color\": \"green\"}"
|
| 316 |
+
},
|
| 317 |
+
{
|
| 318 |
+
"user_content": "color?",
|
| 319 |
+
"tool_name": "get_square_color",
|
| 320 |
+
"tool_arguments": "{}"
|
| 321 |
+
},
|
| 322 |
+
{
|
| 323 |
+
"user_content": "what color",
|
| 324 |
+
"tool_name": "get_square_color",
|
| 325 |
+
"tool_arguments": "{}",
|
| 326 |
+
"tool_arguments": "{}"
|
| 327 |
+
},
|
| 328 |
+
{
|
| 329 |
+
"user_content": "current color?",
|
| 330 |
+
"tool_name": "get_square_color",
|
| 331 |
+
"tool_arguments": "{}"
|
| 332 |
+
},
|
| 333 |
+
{
|
| 334 |
+
"user_content": "Set the square color to indigo",
|
| 335 |
+
"tool_name": "set_square_color",
|
| 336 |
+
"tool_arguments": "{\"color\": \"indigo\"}"
|
| 337 |
+
},
|
| 338 |
+
{
|
| 339 |
+
"user_content": "I want indigo",
|
| 340 |
+
"tool_name": "set_square_color",
|
| 341 |
+
"tool_arguments": "{\"color\": \"indigo\"}"
|
| 342 |
+
},
|
| 343 |
+
{
|
| 344 |
+
"user_content": "Make it olive",
|
| 345 |
+
"tool_name": "set_square_color",
|
| 346 |
+
"tool_arguments": "{\"color\": \"olive\"}"
|
| 347 |
+
},
|
| 348 |
+
{
|
| 349 |
+
"user_content": "Switch the color to beige",
|
| 350 |
+
"tool_name": "set_square_color",
|
| 351 |
+
"tool_arguments": "{\"color\": \"beige\"}"
|
| 352 |
+
},
|
| 353 |
+
{
|
| 354 |
+
"user_content": "Can you change it to lavender?",
|
| 355 |
+
"tool_name": "set_square_color",
|
| 356 |
+
"tool_arguments": "{\"color\": \"lavender\"}"
|
| 357 |
+
},
|
| 358 |
+
{
|
| 359 |
+
"user_content": "What's the color of the square right now?",
|
| 360 |
+
"tool_name": "get_square_color",
|
| 361 |
+
"tool_arguments": "{}"
|
| 362 |
+
},
|
| 363 |
+
{
|
| 364 |
+
"user_content": "I'm curious about the current color",
|
| 365 |
+
"tool_name": "get_square_color",
|
| 366 |
+
"tool_arguments": "{}"
|
| 367 |
+
},
|
| 368 |
+
{
|
| 369 |
+
"user_content": "Tell me what the square looks like",
|
| 370 |
+
"tool_name": "get_square_color",
|
| 371 |
+
"tool_arguments": "{}"
|
| 372 |
+
},
|
| 373 |
+
{
|
| 374 |
+
"user_content": "Please set it to aqua",
|
| 375 |
+
"tool_name": "set_square_color",
|
| 376 |
+
"tool_arguments": "{\"color\": \"aqua\"}"
|
| 377 |
+
},
|
| 378 |
+
{
|
| 379 |
+
"user_content": "Could you make it peach?",
|
| 380 |
+
"tool_name": "set_square_color",
|
| 381 |
+
"tool_arguments": "{\"color\": \"peach\"}"
|
| 382 |
+
},
|
| 383 |
+
{
|
| 384 |
+
"user_content": "Would you change the color to mint?",
|
| 385 |
+
"tool_name": "set_square_color",
|
| 386 |
+
"tool_arguments": "{\"color\": \"mint\"}"
|
| 387 |
+
},
|
| 388 |
+
{
|
| 389 |
+
"user_content": "I'd appreciate it if you set it to ruby",
|
| 390 |
+
"tool_name": "set_square_color",
|
| 391 |
+
"tool_arguments": "{\"color\": \"ruby\"}"
|
| 392 |
+
},
|
| 393 |
+
{
|
| 394 |
+
"user_content": "Can I get the color please?",
|
| 395 |
+
"tool_name": "get_square_color",
|
| 396 |
+
"tool_arguments": "{}"
|
| 397 |
+
},
|
| 398 |
+
{
|
| 399 |
+
"user_content": "Would you mind telling me the color?",
|
| 400 |
+
"tool_name": "get_square_color",
|
| 401 |
+
"tool_arguments": "{}"
|
| 402 |
+
},
|
| 403 |
+
{
|
| 404 |
+
"user_content": "I need to know the current color",
|
| 405 |
+
"tool_name": "get_square_color",
|
| 406 |
+
"tool_arguments": "{}"
|
| 407 |
+
},
|
| 408 |
+
{
|
| 409 |
+
"user_content": "Let me know the square's color",
|
| 410 |
+
"tool_name": "get_square_color",
|
| 411 |
+
"tool_arguments": "{}"
|
| 412 |
+
},
|
| 413 |
+
{
|
| 414 |
+
"user_content": "sky blue",
|
| 415 |
+
"tool_name": "set_square_color",
|
| 416 |
+
"tool_arguments": "{\"color\": \"sky blue\"}"
|
| 417 |
+
},
|
| 418 |
+
{
|
| 419 |
+
"user_content": "dark green",
|
| 420 |
+
"tool_name": "set_square_color",
|
| 421 |
+
"tool_arguments": "{\"color\": \"dark green\"}"
|
| 422 |
+
},
|
| 423 |
+
{
|
| 424 |
+
"user_content": "light blue",
|
| 425 |
+
"tool_name": "set_square_color",
|
| 426 |
+
"tool_arguments": "{\"color\": \"light blue\"}"
|
| 427 |
+
},
|
| 428 |
+
{
|
| 429 |
+
"user_content": "dark red",
|
| 430 |
+
"tool_name": "set_square_color",
|
| 431 |
+
"tool_arguments": "{\"color\": \"dark red\"}"
|
| 432 |
+
},
|
| 433 |
+
{
|
| 434 |
+
"user_content": "bright yellow",
|
| 435 |
+
"tool_name": "set_square_color",
|
| 436 |
+
"tool_arguments": "{\"color\": \"bright yellow\"}"
|
| 437 |
+
},
|
| 438 |
+
{
|
| 439 |
+
"user_content": "pale pink",
|
| 440 |
+
"tool_name": "set_square_color",
|
| 441 |
+
"tool_arguments": "{\"color\": \"pale pink\"}"
|
| 442 |
+
},
|
| 443 |
+
{
|
| 444 |
+
"user_content": "forest green",
|
| 445 |
+
"tool_name": "set_square_color",
|
| 446 |
+
"tool_arguments": "{\"color\": \"forest green\"}"
|
| 447 |
+
},
|
| 448 |
+
{
|
| 449 |
+
"user_content": "ocean blue",
|
| 450 |
+
"tool_name": "set_square_color",
|
| 451 |
+
"tool_arguments": "{\"color\": \"ocean blue\"}"
|
| 452 |
+
},
|
| 453 |
+
{
|
| 454 |
+
"user_content": "Set square to red",
|
| 455 |
+
"tool_name": "set_square_color",
|
| 456 |
+
"tool_arguments": "{\"color\": \"red\"}"
|
| 457 |
+
},
|
| 458 |
+
{
|
| 459 |
+
"user_content": "Square color = blue",
|
| 460 |
+
"tool_name": "set_square_color",
|
| 461 |
+
"tool_arguments": "{\"color\": \"blue\"}"
|
| 462 |
+
},
|
| 463 |
+
{
|
| 464 |
+
"user_content": "color: green",
|
| 465 |
+
"tool_name": "set_square_color",
|
| 466 |
+
"tool_arguments": "{\"color\": \"green\"}"
|
| 467 |
+
},
|
| 468 |
+
{
|
| 469 |
+
"user_content": "get color",
|
| 470 |
+
"tool_name": "get_square_color",
|
| 471 |
+
"tool_arguments": "{}"
|
| 472 |
+
},
|
| 473 |
+
{
|
| 474 |
+
"user_content": "show color",
|
| 475 |
+
"tool_name": "get_square_color",
|
| 476 |
+
"tool_arguments": "{}"
|
| 477 |
+
},
|
| 478 |
+
{
|
| 479 |
+
"user_content": "read color",
|
| 480 |
+
"tool_name": "get_square_color",
|
| 481 |
+
"tool_arguments": "{}"
|
| 482 |
+
},
|
| 483 |
+
{
|
| 484 |
+
"user_content": "Yo make it blue",
|
| 485 |
+
"tool_name": "set_square_color",
|
| 486 |
+
"tool_arguments": "{\"color\": \"blue\"}"
|
| 487 |
+
},
|
| 488 |
+
{
|
| 489 |
+
"user_content": "Hey change to red",
|
| 490 |
+
"tool_name": "set_square_color",
|
| 491 |
+
"tool_arguments": "{\"color\": \"red\"}"
|
| 492 |
+
},
|
| 493 |
+
{
|
| 494 |
+
"user_content": "Sup whats the color",
|
| 495 |
+
"tool_name": "get_square_color",
|
| 496 |
+
"tool_arguments": "{}"
|
| 497 |
+
},
|
| 498 |
+
{
|
| 499 |
+
"user_content": "yo color?",
|
| 500 |
+
"tool_name": "get_square_color",
|
| 501 |
+
"tool_arguments": "{}"
|
| 502 |
+
},
|
| 503 |
+
{
|
| 504 |
+
"user_content": "gimme yellow",
|
| 505 |
+
"tool_name": "set_square_color",
|
| 506 |
+
"tool_arguments": "{\"color\": \"yellow\"}"
|
| 507 |
+
},
|
| 508 |
+
{
|
| 509 |
+
"user_content": "hit me with that purple",
|
| 510 |
+
"tool_name": "set_square_color",
|
| 511 |
+
"tool_arguments": "{\"color\": \"purple\"}"
|
| 512 |
+
},
|
| 513 |
+
{
|
| 514 |
+
"user_content": "gonna need orange on that",
|
| 515 |
+
"tool_name": "set_square_color",
|
| 516 |
+
"tool_arguments": "{\"color\": \"orange\"}"
|
| 517 |
+
},
|
| 518 |
+
{
|
| 519 |
+
"user_content": "Just tell me the color already",
|
| 520 |
+
"tool_name": "get_square_color",
|
| 521 |
+
"tool_arguments": "{}"
|
| 522 |
+
},
|
| 523 |
+
{
|
| 524 |
+
"user_content": "Give me green now",
|
| 525 |
+
"tool_name": "set_square_color",
|
| 526 |
+
"tool_arguments": "{\"color\": \"green\"}"
|
| 527 |
+
},
|
| 528 |
+
{
|
| 529 |
+
"user_content": "What color are we looking at?",
|
| 530 |
+
"tool_name": "get_square_color",
|
| 531 |
+
"tool_arguments": "{}"
|
| 532 |
+
},
|
| 533 |
+
{
|
| 534 |
+
"user_content": "I would like to request the square be changed to azure",
|
| 535 |
+
"tool_name": "set_square_color",
|
| 536 |
+
"tool_arguments": "{\"color\": \"azure\"}"
|
| 537 |
+
},
|
| 538 |
+
{
|
| 539 |
+
"user_content": "Please kindly update the color to burgundy",
|
| 540 |
+
"tool_name": "set_square_color",
|
| 541 |
+
"tool_arguments": "{\"color\": \"burgundy\"}"
|
| 542 |
+
},
|
| 543 |
+
{
|
| 544 |
+
"user_content": "If you could, please inform me of the current color",
|
| 545 |
+
"tool_name": "get_square_color",
|
| 546 |
+
"tool_arguments": "{}"
|
| 547 |
+
},
|
| 548 |
+
{
|
| 549 |
+
"user_content": "I would appreciate knowing what color the square is",
|
| 550 |
+
"tool_name": "get_square_color",
|
| 551 |
+
"tool_arguments": "{}"
|
| 552 |
+
},
|
| 553 |
+
{
|
| 554 |
+
"user_content": "May I request that you change it to periwinkle?",
|
| 555 |
+
"tool_name": "set_square_color",
|
| 556 |
+
"tool_arguments": "{\"color\": \"periwinkle\"}"
|
| 557 |
+
},
|
| 558 |
+
{
|
| 559 |
+
"user_content": "Could you kindly set the color to chartreuse?",
|
| 560 |
+
"tool_name": "set_square_color",
|
| 561 |
+
"tool_arguments": "{\"color\": \"chartreuse\"}"
|
| 562 |
+
},
|
| 563 |
+
{
|
| 564 |
+
"user_content": "plz blue",
|
| 565 |
+
"tool_name": "set_square_color",
|
| 566 |
+
"tool_arguments": "{\"color\": \"blue\"}"
|
| 567 |
+
},
|
| 568 |
+
{
|
| 569 |
+
"user_content": "pls red",
|
| 570 |
+
"tool_name": "set_square_color",
|
| 571 |
+
"tool_arguments": "{\"color\": \"red\"}"
|
| 572 |
+
},
|
| 573 |
+
{
|
| 574 |
+
"user_content": "thx color?",
|
| 575 |
+
"tool_name": "get_square_color",
|
| 576 |
+
"tool_arguments": "{}"
|
| 577 |
+
},
|
| 578 |
+
{
|
| 579 |
+
"user_content": "ty what color",
|
| 580 |
+
"tool_name": "get_square_color",
|
| 581 |
+
"tool_arguments": "{}"
|
| 582 |
+
},
|
| 583 |
+
{
|
| 584 |
+
"user_content": "k make it green",
|
| 585 |
+
"tool_name": "set_square_color",
|
| 586 |
+
"tool_arguments": "{\"color\": \"green\"}"
|
| 587 |
+
},
|
| 588 |
+
{
|
| 589 |
+
"user_content": "Set the display color to amber",
|
| 590 |
+
"tool_name": "set_square_color",
|
| 591 |
+
"tool_arguments": "{\"color\": \"amber\"}"
|
| 592 |
+
},
|
| 593 |
+
{
|
| 594 |
+
"user_content": "Update display to scarlet",
|
| 595 |
+
"tool_name": "set_square_color",
|
| 596 |
+
"tool_arguments": "{\"color\": \"scarlet\"}"
|
| 597 |
+
},
|
| 598 |
+
{
|
| 599 |
+
"user_content": "Change display color to emerald",
|
| 600 |
+
"tool_name": "set_square_color",
|
| 601 |
+
"tool_arguments": "{\"color\": \"emerald\"}"
|
| 602 |
+
},
|
| 603 |
+
{
|
| 604 |
+
"user_content": "What is the display showing?",
|
| 605 |
+
"tool_name": "get_square_color",
|
| 606 |
+
"tool_arguments": "{}"
|
| 607 |
+
},
|
| 608 |
+
{
|
| 609 |
+
"user_content": "Get display color",
|
| 610 |
+
"tool_name": "get_square_color",
|
| 611 |
+
"tool_arguments": "{}"
|
| 612 |
+
},
|
| 613 |
+
{
|
| 614 |
+
"user_content": "Show display color",
|
| 615 |
+
"tool_name": "get_square_color",
|
| 616 |
+
"tool_arguments": "{}",
|
| 617 |
+
"tool_arguments": "{}"
|
| 618 |
+
},
|
| 619 |
+
{
|
| 620 |
+
"user_content": "Alright, set it to cerulean",
|
| 621 |
+
"tool_name": "set_square_color",
|
| 622 |
+
"tool_arguments": "{\"color\": \"cerulean\"}"
|
| 623 |
+
},
|
| 624 |
+
{
|
| 625 |
+
"user_content": "OK so make it tangerine",
|
| 626 |
+
"tool_name": "set_square_color",
|
| 627 |
+
"tool_arguments": "{\"color\": \"tangerine\"}"
|
| 628 |
+
},
|
| 629 |
+
{
|
| 630 |
+
"user_content": "Fine, change to mauve",
|
| 631 |
+
"tool_name": "set_square_color",
|
| 632 |
+
"tool_arguments": "{\"color\": \"mauve\"}"
|
| 633 |
+
},
|
| 634 |
+
{
|
| 635 |
+
"user_content": "Sure, what's the color?",
|
| 636 |
+
"tool_name": "get_square_color",
|
| 637 |
+
"tool_arguments": "{}"
|
| 638 |
+
},
|
| 639 |
+
{
|
| 640 |
+
"user_content": "Yeah tell me the color",
|
| 641 |
+
"tool_name": "get_square_color",
|
| 642 |
+
"tool_arguments": "{}"
|
| 643 |
+
},
|
| 644 |
+
{
|
| 645 |
+
"user_content": "So what color is it?",
|
| 646 |
+
"tool_name": "get_square_color",
|
| 647 |
+
"tool_arguments": "{}"
|
| 648 |
+
},
|
| 649 |
+
{
|
| 650 |
+
"user_content": "And the color is?",
|
| 651 |
+
"tool_name": "get_square_color",
|
| 652 |
+
"tool_arguments": "{}"
|
| 653 |
+
},
|
| 654 |
+
{
|
| 655 |
+
"user_content": "Make it #FF0000",
|
| 656 |
+
"tool_name": "set_square_color",
|
| 657 |
+
"tool_arguments": "{\"color\": \"#FF0000\"}"
|
| 658 |
+
},
|
| 659 |
+
{
|
| 660 |
+
"user_content": "Set to #00FF00",
|
| 661 |
+
"tool_name": "set_square_color",
|
| 662 |
+
"tool_arguments": "{\"color\": \"#00FF00\"}"
|
| 663 |
+
},
|
| 664 |
+
{
|
| 665 |
+
"user_content": "Change to #0000FF",
|
| 666 |
+
"tool_name": "set_square_color",
|
| 667 |
+
"tool_arguments": "{\"color\": \"#0000FF\"}"
|
| 668 |
+
},
|
| 669 |
+
{
|
| 670 |
+
"user_content": "Use hex #FFFF00",
|
| 671 |
+
"tool_name": "set_square_color",
|
| 672 |
+
"tool_arguments": "{\"color\": \"#FFFF00\"}"
|
| 673 |
+
},
|
| 674 |
+
{
|
| 675 |
+
"user_content": "Apply #FF00FF",
|
| 676 |
+
"tool_name": "set_square_color",
|
| 677 |
+
"tool_arguments": "{\"color\": \"#FF00FF\"}"
|
| 678 |
+
},
|
| 679 |
+
{
|
| 680 |
+
"user_content": "Set to rgb red",
|
| 681 |
+
"tool_name": "set_square_color",
|
| 682 |
+
"tool_arguments": "{\"color\": \"red\"}"
|
| 683 |
+
},
|
| 684 |
+
{
|
| 685 |
+
"user_content": "First, tell me what color it is",
|
| 686 |
+
"tool_name": "get_square_color",
|
| 687 |
+
"tool_arguments": "{}"
|
| 688 |
+
},
|
| 689 |
+
{
|
| 690 |
+
"user_content": "Before anything, what's the color?",
|
| 691 |
+
"tool_name": "get_square_color",
|
| 692 |
+
"tool_arguments": "{}"
|
| 693 |
+
},
|
| 694 |
+
{
|
| 695 |
+
"user_content": "To start, show me the current color",
|
| 696 |
+
"tool_name": "get_square_color",
|
| 697 |
+
"tool_arguments": "{}"
|
| 698 |
+
},
|
| 699 |
+
{
|
| 700 |
+
"user_content": "Now change it to slate",
|
| 701 |
+
"tool_name": "set_square_color",
|
| 702 |
+
"tool_arguments": "{\"color\": \"slate\"}"
|
| 703 |
+
},
|
| 704 |
+
{
|
| 705 |
+
"user_content": "Then make it ivory",
|
| 706 |
+
"tool_name": "set_square_color",
|
| 707 |
+
"tool_arguments": "{\"color\": \"ivory\"}"
|
| 708 |
+
},
|
| 709 |
+
{
|
| 710 |
+
"user_content": "After that set it to khaki",
|
| 711 |
+
"tool_name": "set_square_color",
|
| 712 |
+
"tool_arguments": "{\"color\": \"khaki\"}"
|
| 713 |
+
},
|
| 714 |
+
{
|
| 715 |
+
"user_content": "Can you check the color for me?",
|
| 716 |
+
"tool_name": "get_square_color",
|
| 717 |
+
"tool_arguments": "{}"
|
| 718 |
+
},
|
| 719 |
+
{
|
| 720 |
+
"user_content": "Just checking - what color is it?",
|
| 721 |
+
"tool_name": "get_square_color",
|
| 722 |
+
"tool_arguments": "{}"
|
| 723 |
+
},
|
| 724 |
+
{
|
| 725 |
+
"user_content": "Quick question - the color?",
|
| 726 |
+
"tool_name": "get_square_color",
|
| 727 |
+
"tool_arguments": "{}"
|
| 728 |
+
},
|
| 729 |
+
{
|
| 730 |
+
"user_content": "One thing - change to plum",
|
| 731 |
+
"tool_name": "set_square_color",
|
| 732 |
+
"tool_arguments": "{\"color\": \"plum\"}"
|
| 733 |
+
},
|
| 734 |
+
{
|
| 735 |
+
"user_content": "Real quick - make it rust",
|
| 736 |
+
"tool_name": "set_square_color",
|
| 737 |
+
"tool_arguments": "{\"color\": \"rust\"}"
|
| 738 |
+
},
|
| 739 |
+
{
|
| 740 |
+
"user_content": "BTW set it to jade",
|
| 741 |
+
"tool_name": "set_square_color",
|
| 742 |
+
"tool_arguments": "{\"color\": \"jade\"}"
|
| 743 |
+
},
|
| 744 |
+
{
|
| 745 |
+
"user_content": "FYI the color should be sapphire",
|
| 746 |
+
"tool_name": "set_square_color",
|
| 747 |
+
"tool_arguments": "{\"color\": \"sapphire\"}"
|
| 748 |
+
},
|
| 749 |
+
{
|
| 750 |
+
"user_content": "lmk the color",
|
| 751 |
+
"tool_name": "get_square_color",
|
| 752 |
+
"tool_arguments": "{}"
|
| 753 |
+
},
|
| 754 |
+
{
|
| 755 |
+
"user_content": "hmu with the color info",
|
| 756 |
+
"tool_name": "get_square_color",
|
| 757 |
+
"tool_arguments": "{}"
|
| 758 |
+
},
|
| 759 |
+
{
|
| 760 |
+
"user_content": "need the color asap",
|
| 761 |
+
"tool_name": "get_square_color",
|
| 762 |
+
"tool_arguments": "{}"
|
| 763 |
+
},
|
| 764 |
+
{
|
| 765 |
+
"user_content": "color pls",
|
| 766 |
+
"tool_name": "get_square_color",
|
| 767 |
+
"tool_arguments": "{}"
|
| 768 |
+
},
|
| 769 |
+
{
|
| 770 |
+
"user_content": "Hmm make it rose",
|
| 771 |
+
"tool_name": "set_square_color",
|
| 772 |
+
"tool_arguments": "{\"color\": \"rose\"}"
|
| 773 |
+
},
|
| 774 |
+
{
|
| 775 |
+
"user_content": "Ugh just set it to tan",
|
| 776 |
+
"tool_name": "set_square_color",
|
| 777 |
+
"tool_arguments": "{\"color\": \"tan\"}"
|
| 778 |
+
},
|
| 779 |
+
{
|
| 780 |
+
"user_content": "Wow change to electric blue",
|
| 781 |
+
"tool_name": "set_square_color",
|
| 782 |
+
"tool_arguments": "{\"color\": \"electric blue\"}"
|
| 783 |
+
},
|
| 784 |
+
{
|
| 785 |
+
"user_content": "Ooh make it neon green",
|
| 786 |
+
"tool_name": "set_square_color",
|
| 787 |
+
"tool_arguments": "{\"color\": \"neon green\"}"
|
| 788 |
+
},
|
| 789 |
+
{
|
| 790 |
+
"user_content": "Nice! What color?",
|
| 791 |
+
"tool_name": "get_square_color",
|
| 792 |
+
"tool_arguments": "{}"
|
| 793 |
+
},
|
| 794 |
+
{
|
| 795 |
+
"user_content": "Cool, show me the color",
|
| 796 |
+
"tool_name": "get_square_color",
|
| 797 |
+
"tool_arguments": "{}"
|
| 798 |
+
},
|
| 799 |
+
{
|
| 800 |
+
"user_content": "Awesome, what's the color now?",
|
| 801 |
+
"tool_name": "get_square_color",
|
| 802 |
+
"tool_arguments": "{}"
|
| 803 |
+
},
|
| 804 |
+
{
|
| 805 |
+
"user_content": "Great, tell me the color",
|
| 806 |
+
"tool_name": "get_square_color",
|
| 807 |
+
"tool_arguments": "{}"
|
| 808 |
+
},
|
| 809 |
+
{
|
| 810 |
+
"user_content": "I command you to set it to fuchsia",
|
| 811 |
+
"tool_name": "set_square_color",
|
| 812 |
+
"tool_arguments": "{\"color\": \"fuchsia\"}"
|
| 813 |
+
},
|
| 814 |
+
{
|
| 815 |
+
"user_content": "You must change it to cobalt",
|
| 816 |
+
"tool_name": "set_square_color",
|
| 817 |
+
"tool_arguments": "{\"color\": \"cobalt\"}"
|
| 818 |
+
},
|
| 819 |
+
{
|
| 820 |
+
"user_content": "I order you to make it bronze",
|
| 821 |
+
"tool_name": "set_square_color",
|
| 822 |
+
"tool_arguments": "{\"color\": \"bronze\"}"
|
| 823 |
+
},
|
| 824 |
+
{
|
| 825 |
+
"user_content": "You are required to tell me the color",
|
| 826 |
+
"tool_name": "get_square_color",
|
| 827 |
+
"tool_arguments": "{}"
|
| 828 |
+
},
|
| 829 |
+
{
|
| 830 |
+
"user_content": "You shall inform me of the current color",
|
| 831 |
+
"tool_name": "get_square_color",
|
| 832 |
+
"tool_arguments": "{}"
|
| 833 |
+
},
|
| 834 |
+
{
|
| 835 |
+
"user_content": "I hereby request the color information",
|
| 836 |
+
"tool_name": "get_square_color",
|
| 837 |
+
"tool_arguments": "{}"
|
| 838 |
+
},
|
| 839 |
+
{
|
| 840 |
+
"user_content": "change blue",
|
| 841 |
+
"tool_name": "set_square_color",
|
| 842 |
+
"tool_arguments": "{\"color\": \"blue\"}"
|
| 843 |
+
},
|
| 844 |
+
{
|
| 845 |
+
"user_content": "set red",
|
| 846 |
+
"tool_name": "set_square_color",
|
| 847 |
+
"tool_arguments": "{\"color\": \"red\"}"
|
| 848 |
+
},
|
| 849 |
+
{
|
| 850 |
+
"user_content": "make green",
|
| 851 |
+
"tool_name": "set_square_color",
|
| 852 |
+
"tool_arguments": "{\"color\": \"green\"}"
|
| 853 |
+
},
|
| 854 |
+
{
|
| 855 |
+
"user_content": "do yellow",
|
| 856 |
+
"tool_name": "set_square_color",
|
| 857 |
+
"tool_arguments": "{\"color\": \"yellow\"}"
|
| 858 |
+
},
|
| 859 |
+
{
|
| 860 |
+
"user_content": "try purple",
|
| 861 |
+
"tool_name": "set_square_color",
|
| 862 |
+
"tool_arguments": "{\"color\": \"purple\"}"
|
| 863 |
+
},
|
| 864 |
+
{
|
| 865 |
+
"user_content": "use orange",
|
| 866 |
+
"tool_name": "set_square_color",
|
| 867 |
+
"tool_arguments": "{\"color\": \"orange\"}"
|
| 868 |
+
},
|
| 869 |
+
{
|
| 870 |
+
"user_content": "whats the color",
|
| 871 |
+
"tool_name": "get_square_color",
|
| 872 |
+
"tool_arguments": "{}"
|
| 873 |
+
},
|
| 874 |
+
{
|
| 875 |
+
"user_content": "tell color",
|
| 876 |
+
"tool_name": "get_square_color",
|
| 877 |
+
"tool_arguments": "{}"
|
| 878 |
+
},
|
| 879 |
+
{
|
| 880 |
+
"user_content": "get current color",
|
| 881 |
+
"tool_name": "get_square_color",
|
| 882 |
+
"tool_arguments": "{}"
|
| 883 |
+
},
|
| 884 |
+
{
|
| 885 |
+
"user_content": "show what color",
|
| 886 |
+
"tool_name": "get_square_color",
|
| 887 |
+
"tool_arguments": "{}"
|
| 888 |
+
},
|
| 889 |
+
{
|
| 890 |
+
"user_content": "Want blue on the square",
|
| 891 |
+
"tool_name": "set_square_color",
|
| 892 |
+
"tool_arguments": "{\"color\": \"blue\"}"
|
| 893 |
+
},
|
| 894 |
+
{
|
| 895 |
+
"user_content": "Need the square red",
|
| 896 |
+
"tool_name": "set_square_color",
|
| 897 |
+
"tool_arguments": "{\"color\": \"red\"}"
|
| 898 |
+
},
|
| 899 |
+
{
|
| 900 |
+
"user_content": "Gotta have green",
|
| 901 |
+
"tool_name": "set_square_color",
|
| 902 |
+
"tool_arguments": "{\"color\": \"green\"}"
|
| 903 |
+
},
|
| 904 |
+
{
|
| 905 |
+
"user_content": "Wanna see yellow",
|
| 906 |
+
"tool_name": "set_square_color",
|
| 907 |
+
"tool_arguments": "{\"color\": \"yellow\"}"
|
| 908 |
+
},
|
| 909 |
+
{
|
| 910 |
+
"user_content": "Curious what color is showing",
|
| 911 |
+
"tool_name": "get_square_color",
|
| 912 |
+
"tool_arguments": "{}"
|
| 913 |
+
},
|
| 914 |
+
{
|
| 915 |
+
"user_content": "Wondering about the color",
|
| 916 |
+
"tool_name": "get_square_color",
|
| 917 |
+
"tool_arguments": "{}"
|
| 918 |
+
},
|
| 919 |
+
{
|
| 920 |
+
"user_content": "Interested in the current color",
|
| 921 |
+
"tool_name": "get_square_color",
|
| 922 |
+
"tool_arguments": "{}"
|
| 923 |
+
},
|
| 924 |
+
{
|
| 925 |
+
"user_content": "Looking to know the color",
|
| 926 |
+
"tool_name": "get_square_color",
|
| 927 |
+
"tool_arguments": "{}"
|
| 928 |
+
},
|
| 929 |
+
{
|
| 930 |
+
"user_content": "The square needs to be steel blue",
|
| 931 |
+
"tool_name": "set_square_color",
|
| 932 |
+
"tool_arguments": "{\"color\": \"steel blue\"}"
|
| 933 |
+
},
|
| 934 |
+
{
|
| 935 |
+
"user_content": "I think hot pink would be nice",
|
| 936 |
+
"tool_name": "set_square_color",
|
| 937 |
+
"tool_arguments": "{\"color\": \"hot pink\"}"
|
| 938 |
+
},
|
| 939 |
+
{
|
| 940 |
+
"user_content": "How about sea green?",
|
| 941 |
+
"tool_name": "set_square_color",
|
| 942 |
+
"tool_arguments": "{\"color\": \"sea green\"}"
|
| 943 |
+
},
|
| 944 |
+
{
|
| 945 |
+
"user_content": "Maybe midnight blue?",
|
| 946 |
+
"tool_name": "set_square_color",
|
| 947 |
+
"tool_arguments": "{\"color\": \"midnight blue\"}"
|
| 948 |
+
},
|
| 949 |
+
{
|
| 950 |
+
"user_content": "Thinking about the color, what is it?",
|
| 951 |
+
"tool_name": "get_square_color",
|
| 952 |
+
"tool_arguments": "{}"
|
| 953 |
+
},
|
| 954 |
+
{
|
| 955 |
+
"user_content": "Speaking of colors, which one is active?",
|
| 956 |
+
"tool_name": "get_square_color",
|
| 957 |
+
"tool_arguments": "{}"
|
| 958 |
+
},
|
| 959 |
+
{
|
| 960 |
+
"user_content": "On the topic of the square, what color?",
|
| 961 |
+
"tool_name": "get_square_color",
|
| 962 |
+
"tool_arguments": "{}"
|
| 963 |
+
},
|
| 964 |
+
{
|
| 965 |
+
"user_content": "Regarding the display, what's the color?",
|
| 966 |
+
"tool_name": "get_square_color",
|
| 967 |
+
"tool_arguments": "{}"
|
| 968 |
+
}
|
| 969 |
+
]
|
finetuning-functiongemma/finetune_functiongemma.ipynb
ADDED
|
@@ -0,0 +1,690 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "markdown",
|
| 5 |
+
"metadata": {},
|
| 6 |
+
"source": [
|
| 7 |
+
"# π¨ Fine-tuning FunctionGemma for Square Color Control\n",
|
| 8 |
+
"\n",
|
| 9 |
+
"This notebook demonstrates how to fine-tune FunctionGemma to recognize color control commands.\n",
|
| 10 |
+
"\n",
|
| 11 |
+
"**Author:** [Your Name]\n",
|
| 12 |
+
"**Portfolio:** AI Engineering\n",
|
| 13 |
+
"\n",
|
| 14 |
+
"## Objectives\n",
|
| 15 |
+
"1. Train the model to call `set_square_color` when the user wants to change the color\n",
|
| 16 |
+
"2. Train the model to call `get_square_color` when the user asks about the current color\n",
|
| 17 |
+
"3. Support various natural language command styles"
|
| 18 |
+
]
|
| 19 |
+
},
|
| 20 |
+
{
|
| 21 |
+
"cell_type": "markdown",
|
| 22 |
+
"metadata": {},
|
| 23 |
+
"source": [
|
| 24 |
+
"## π¦ 1. Setup and Installation"
|
| 25 |
+
]
|
| 26 |
+
},
|
| 27 |
+
{
|
| 28 |
+
"cell_type": "code",
|
| 29 |
+
"execution_count": null,
|
| 30 |
+
"metadata": {},
|
| 31 |
+
"outputs": [],
|
| 32 |
+
"source": [
|
| 33 |
+
"# Install dependencies\n",
|
| 34 |
+
"%pip install -q torch tensorboard\n",
|
| 35 |
+
"%pip install -q transformers datasets accelerate evaluate trl protobuf sentencepiece\n",
|
| 36 |
+
"\n",
|
| 37 |
+
"# If running on Ampere+ GPU (A100, L4), uncomment:\n",
|
| 38 |
+
"# %pip install -q flash-attn"
|
| 39 |
+
]
|
| 40 |
+
},
|
| 41 |
+
{
|
| 42 |
+
"cell_type": "code",
|
| 43 |
+
"execution_count": null,
|
| 44 |
+
"metadata": {},
|
| 45 |
+
"outputs": [],
|
| 46 |
+
"source": [
|
| 47 |
+
"# Login to Hugging Face Hub\n",
|
| 48 |
+
"from huggingface_hub import login\n",
|
| 49 |
+
"\n",
|
| 50 |
+
"# If using Colab secrets:\n",
|
| 51 |
+
"# from google.colab import userdata\n",
|
| 52 |
+
"# login(token=userdata.get('HF_TOKEN'))\n",
|
| 53 |
+
"\n",
|
| 54 |
+
"# Or interactive login:\n",
|
| 55 |
+
"login()"
|
| 56 |
+
]
|
| 57 |
+
},
|
| 58 |
+
{
|
| 59 |
+
"cell_type": "code",
|
| 60 |
+
"execution_count": null,
|
| 61 |
+
"metadata": {},
|
| 62 |
+
"outputs": [],
|
| 63 |
+
"source": [
|
| 64 |
+
"# Configuration\n",
|
| 65 |
+
"BASE_MODEL = \"google/functiongemma-270m-it\"\n",
|
| 66 |
+
"OUTPUT_DIR = \"functiongemma-square-color\" # Model name on your HF Hub\n",
|
| 67 |
+
"LEARNING_RATE = 5e-5\n",
|
| 68 |
+
"NUM_EPOCHS = 8\n",
|
| 69 |
+
"BATCH_SIZE = 4"
|
| 70 |
+
]
|
| 71 |
+
},
|
| 72 |
+
{
|
| 73 |
+
"cell_type": "markdown",
|
| 74 |
+
"metadata": {},
|
| 75 |
+
"source": [
|
| 76 |
+
"## π 2. Prepare Dataset"
|
| 77 |
+
]
|
| 78 |
+
},
|
| 79 |
+
{
|
| 80 |
+
"cell_type": "code",
|
| 81 |
+
"execution_count": null,
|
| 82 |
+
"metadata": {},
|
| 83 |
+
"outputs": [],
|
| 84 |
+
"source": [
|
| 85 |
+
"import json\n",
|
| 86 |
+
"from datasets import Dataset\n",
|
| 87 |
+
"from transformers.utils import get_json_schema\n",
|
| 88 |
+
"\n",
|
| 89 |
+
"# Tool definitions\n",
|
| 90 |
+
"def set_square_color(color: str) -> str:\n",
|
| 91 |
+
" \"\"\"\n",
|
| 92 |
+
" Sets the color of the square displayed on the screen.\n",
|
| 93 |
+
" \n",
|
| 94 |
+
" Args:\n",
|
| 95 |
+
" color: The color to set, e.g. red, blue, green\n",
|
| 96 |
+
" \"\"\"\n",
|
| 97 |
+
" return f\"Color set to {color}\"\n",
|
| 98 |
+
"\n",
|
| 99 |
+
"def get_square_color() -> str:\n",
|
| 100 |
+
" \"\"\"\n",
|
| 101 |
+
" Returns the current color of the square.\n",
|
| 102 |
+
" Use this when the user asks about the current color.\n",
|
| 103 |
+
" \"\"\"\n",
|
| 104 |
+
" return \"Current color\"\n",
|
| 105 |
+
"\n",
|
| 106 |
+
"# Generate schemas automatically\n",
|
| 107 |
+
"TOOLS = [\n",
|
| 108 |
+
" get_json_schema(set_square_color),\n",
|
| 109 |
+
" get_json_schema(get_square_color)\n",
|
| 110 |
+
"]\n",
|
| 111 |
+
"\n",
|
| 112 |
+
"print(\"Tool schemas:\")\n",
|
| 113 |
+
"print(json.dumps(TOOLS, indent=2))"
|
| 114 |
+
]
|
| 115 |
+
},
|
| 116 |
+
{
|
| 117 |
+
"cell_type": "code",
|
| 118 |
+
"execution_count": null,
|
| 119 |
+
"metadata": {},
|
| 120 |
+
"outputs": [],
|
| 121 |
+
"source": [
|
| 122 |
+
"# Load training dataset from file\n",
|
| 123 |
+
"with open(\"dataset/square_color_dataset.json\", \"r\") as f:\n",
|
| 124 |
+
" square_color_dataset = json.load(f)\n",
|
| 125 |
+
"\n",
|
| 126 |
+
"print(f\"Total examples: {len(square_color_dataset)}\")\n",
|
| 127 |
+
"print(f\" - SET: {len([x for x in square_color_dataset if x['tool_name'] == 'set_square_color'])}\")\n",
|
| 128 |
+
"print(f\" - GET: {len([x for x in square_color_dataset if x['tool_name'] == 'get_square_color'])}\")\n",
|
| 129 |
+
"\n",
|
| 130 |
+
"# Preview first few examples\n",
|
| 131 |
+
"print(\"\\nFirst 3 examples:\")\n",
|
| 132 |
+
"for i, sample in enumerate(square_color_dataset[:3]):\n",
|
| 133 |
+
" print(f\" {i+1}. \\\"{sample['user_content']}\\\" β {sample['tool_name']}\")"
|
| 134 |
+
]
|
| 135 |
+
},
|
| 136 |
+
{
|
| 137 |
+
"cell_type": "code",
|
| 138 |
+
"execution_count": null,
|
| 139 |
+
"metadata": {},
|
| 140 |
+
"outputs": [],
|
| 141 |
+
"source": [
|
| 142 |
+
"# Convert to conversation format\n",
|
| 143 |
+
"SYSTEM_PROMPT = \"You are a model that can do function calling with the following functions\"\n",
|
| 144 |
+
"\n",
|
| 145 |
+
"def create_conversation(sample):\n",
|
| 146 |
+
" return {\n",
|
| 147 |
+
" \"messages\": [\n",
|
| 148 |
+
" {\"role\": \"developer\", \"content\": SYSTEM_PROMPT},\n",
|
| 149 |
+
" {\"role\": \"user\", \"content\": sample[\"user_content\"]},\n",
|
| 150 |
+
" {\n",
|
| 151 |
+
" \"role\": \"assistant\",\n",
|
| 152 |
+
" \"tool_calls\": [{\n",
|
| 153 |
+
" \"type\": \"function\",\n",
|
| 154 |
+
" \"function\": {\n",
|
| 155 |
+
" \"name\": sample[\"tool_name\"],\n",
|
| 156 |
+
" \"arguments\": json.loads(sample[\"tool_arguments\"])\n",
|
| 157 |
+
" }\n",
|
| 158 |
+
" }]\n",
|
| 159 |
+
" },\n",
|
| 160 |
+
" ],\n",
|
| 161 |
+
" \"tools\": TOOLS\n",
|
| 162 |
+
" }\n",
|
| 163 |
+
"\n",
|
| 164 |
+
"# Create dataset\n",
|
| 165 |
+
"dataset = Dataset.from_list(square_color_dataset)\n",
|
| 166 |
+
"dataset = dataset.map(create_conversation, remove_columns=dataset.features, batched=False)\n",
|
| 167 |
+
"\n",
|
| 168 |
+
"# Split 80/20\n",
|
| 169 |
+
"dataset = dataset.train_test_split(test_size=0.2, shuffle=True, seed=42)\n",
|
| 170 |
+
"\n",
|
| 171 |
+
"print(f\"Train: {len(dataset['train'])} examples\")\n",
|
| 172 |
+
"print(f\"Test: {len(dataset['test'])} examples\")"
|
| 173 |
+
]
|
| 174 |
+
},
|
| 175 |
+
{
|
| 176 |
+
"cell_type": "code",
|
| 177 |
+
"execution_count": null,
|
| 178 |
+
"metadata": {},
|
| 179 |
+
"outputs": [],
|
| 180 |
+
"source": [
|
| 181 |
+
"# Visualize an example\n",
|
| 182 |
+
"print(\"Formatted conversation example:\")\n",
|
| 183 |
+
"print(json.dumps(dataset[\"train\"][0], indent=2))"
|
| 184 |
+
]
|
| 185 |
+
},
|
| 186 |
+
{
|
| 187 |
+
"cell_type": "markdown",
|
| 188 |
+
"metadata": {},
|
| 189 |
+
"source": [
|
| 190 |
+
"## π€ 3. Load Model"
|
| 191 |
+
]
|
| 192 |
+
},
|
| 193 |
+
{
|
| 194 |
+
"cell_type": "code",
|
| 195 |
+
"execution_count": null,
|
| 196 |
+
"metadata": {},
|
| 197 |
+
"outputs": [],
|
| 198 |
+
"source": [
|
| 199 |
+
"import torch\n",
|
| 200 |
+
"from transformers import AutoTokenizer, AutoModelForCausalLM\n",
|
| 201 |
+
"\n",
|
| 202 |
+
"quantization_config = BitsAndBytesConfig(load_in_4bit=True)\n",
|
| 203 |
+
"\n",
|
| 204 |
+
"# Load model and tokenizer\n",
|
| 205 |
+
"model = AutoModelForCausalLM.from_pretrained(\n",
|
| 206 |
+
" BASE_MODEL,\n",
|
| 207 |
+
" torch_dtype=\"auto\",\n",
|
| 208 |
+
" device_map=\"auto\",\n",
|
| 209 |
+
" quantization_config=quantization_config, \n",
|
| 210 |
+
" attn_implementation=\"eager\"\n",
|
| 211 |
+
" \n",
|
| 212 |
+
")\n",
|
| 213 |
+
"\n",
|
| 214 |
+
"tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL)\n",
|
| 215 |
+
"\n",
|
| 216 |
+
"print(f\"Device: {model.device}\")\n",
|
| 217 |
+
"print(f\"DType: {model.dtype}\")\n",
|
| 218 |
+
"print(f\"Parameters: {model.num_parameters():,}\")"
|
| 219 |
+
]
|
| 220 |
+
},
|
| 221 |
+
{
|
| 222 |
+
"cell_type": "code",
|
| 223 |
+
"execution_count": null,
|
| 224 |
+
"metadata": {},
|
| 225 |
+
"outputs": [],
|
| 226 |
+
"source": [
|
| 227 |
+
"# Visualize how the tokenizer formats the prompt\n",
|
| 228 |
+
"debug_msg = tokenizer.apply_chat_template(\n",
|
| 229 |
+
" dataset[\"train\"][0][\"messages\"],\n",
|
| 230 |
+
" tools=dataset[\"train\"][0][\"tools\"],\n",
|
| 231 |
+
" add_generation_prompt=False,\n",
|
| 232 |
+
" tokenize=False\n",
|
| 233 |
+
")\n",
|
| 234 |
+
"\n",
|
| 235 |
+
"print(\"=== Formatted prompt ===\")\n",
|
| 236 |
+
"print(debug_msg)"
|
| 237 |
+
]
|
| 238 |
+
},
|
| 239 |
+
{
|
| 240 |
+
"cell_type": "markdown",
|
| 241 |
+
"metadata": {},
|
| 242 |
+
"source": [
|
| 243 |
+
"## π§ͺ 3.5. Pre-Training Evaluation (Baseline)\n",
|
| 244 |
+
"\n",
|
| 245 |
+
"Before fine-tuning, let's evaluate the base model to establish a baseline. This helps us measure the actual improvement from fine-tuning."
|
| 246 |
+
]
|
| 247 |
+
},
|
| 248 |
+
{
|
| 249 |
+
"cell_type": "code",
|
| 250 |
+
"execution_count": null,
|
| 251 |
+
"metadata": {},
|
| 252 |
+
"outputs": [],
|
| 253 |
+
"source": [
|
| 254 |
+
"def evaluate_model(model, tokenizer, test_samples, tools, system_prompt, verbose=True):\n",
|
| 255 |
+
" \"\"\"\n",
|
| 256 |
+
" Evaluate model on a set of test samples.\n",
|
| 257 |
+
" Returns accuracy metrics and detailed results.\n",
|
| 258 |
+
" \"\"\"\n",
|
| 259 |
+
" results = {\n",
|
| 260 |
+
" \"total\": len(test_samples),\n",
|
| 261 |
+
" \"correct\": 0,\n",
|
| 262 |
+
" \"correct_tool\": 0,\n",
|
| 263 |
+
" \"correct_args\": 0,\n",
|
| 264 |
+
" \"details\": []\n",
|
| 265 |
+
" }\n",
|
| 266 |
+
" \n",
|
| 267 |
+
" for sample in test_samples:\n",
|
| 268 |
+
" messages = [\n",
|
| 269 |
+
" {\"role\": \"developer\", \"content\": system_prompt},\n",
|
| 270 |
+
" {\"role\": \"user\", \"content\": sample[\"user_content\"]},\n",
|
| 271 |
+
" ]\n",
|
| 272 |
+
" \n",
|
| 273 |
+
" inputs = tokenizer.apply_chat_template(\n",
|
| 274 |
+
" messages,\n",
|
| 275 |
+
" tools=tools,\n",
|
| 276 |
+
" tokenize=True,\n",
|
| 277 |
+
" add_generation_prompt=True,\n",
|
| 278 |
+
" return_dict=True,\n",
|
| 279 |
+
" return_tensors=\"pt\"\n",
|
| 280 |
+
" ).to(model.device)\n",
|
| 281 |
+
" \n",
|
| 282 |
+
" with torch.no_grad():\n",
|
| 283 |
+
" output = model.generate(\n",
|
| 284 |
+
" **inputs,\n",
|
| 285 |
+
" max_new_tokens=128,\n",
|
| 286 |
+
" do_sample=False,\n",
|
| 287 |
+
" )\n",
|
| 288 |
+
" \n",
|
| 289 |
+
" input_length = inputs['input_ids'].shape[1]\n",
|
| 290 |
+
" response = tokenizer.decode(output[0][input_length:], skip_special_tokens=False)\n",
|
| 291 |
+
" \n",
|
| 292 |
+
" # Check if correct tool was called\n",
|
| 293 |
+
" tool_correct = sample[\"tool_name\"] in response\n",
|
| 294 |
+
" \n",
|
| 295 |
+
" # Check if arguments are correct (for set_square_color)\n",
|
| 296 |
+
" args_correct = False\n",
|
| 297 |
+
" if tool_correct and sample[\"tool_name\"] == \"set_square_color\":\n",
|
| 298 |
+
" expected_args = json.loads(sample[\"tool_arguments\"])\n",
|
| 299 |
+
" args_correct = expected_args.get(\"color\", \"\") in response\n",
|
| 300 |
+
" elif tool_correct and sample[\"tool_name\"] == \"get_square_color\":\n",
|
| 301 |
+
" args_correct = True # No args needed\n",
|
| 302 |
+
" \n",
|
| 303 |
+
" if tool_correct:\n",
|
| 304 |
+
" results[\"correct_tool\"] += 1\n",
|
| 305 |
+
" if tool_correct and args_correct:\n",
|
| 306 |
+
" results[\"correct\"] += 1\n",
|
| 307 |
+
" results[\"correct_args\"] += 1\n",
|
| 308 |
+
" \n",
|
| 309 |
+
" results[\"details\"].append({\n",
|
| 310 |
+
" \"input\": sample[\"user_content\"],\n",
|
| 311 |
+
" \"expected_tool\": sample[\"tool_name\"],\n",
|
| 312 |
+
" \"expected_args\": sample[\"tool_arguments\"],\n",
|
| 313 |
+
" \"response\": response,\n",
|
| 314 |
+
" \"tool_correct\": tool_correct,\n",
|
| 315 |
+
" \"args_correct\": args_correct\n",
|
| 316 |
+
" })\n",
|
| 317 |
+
" \n",
|
| 318 |
+
" results[\"tool_accuracy\"] = results[\"correct_tool\"] / results[\"total\"] * 100\n",
|
| 319 |
+
" results[\"full_accuracy\"] = results[\"correct\"] / results[\"total\"] * 100\n",
|
| 320 |
+
" \n",
|
| 321 |
+
" if verbose:\n",
|
| 322 |
+
" print(f\"Tool Accuracy: {results['correct_tool']}/{results['total']} ({results['tool_accuracy']:.1f}%)\")\n",
|
| 323 |
+
" print(f\"Full Accuracy (tool + args): {results['correct']}/{results['total']} ({results['full_accuracy']:.1f}%)\")\n",
|
| 324 |
+
" \n",
|
| 325 |
+
" return results"
|
| 326 |
+
]
|
| 327 |
+
},
|
| 328 |
+
{
|
| 329 |
+
"cell_type": "code",
|
| 330 |
+
"execution_count": null,
|
| 331 |
+
"metadata": {},
|
| 332 |
+
"outputs": [],
|
| 333 |
+
"source": [
|
| 334 |
+
"# Create evaluation test set from the dataset (sample 5 SET + 5 GET)\n",
|
| 335 |
+
"import random\n",
|
| 336 |
+
"\n",
|
| 337 |
+
"random.seed(42) # For reproducibility\n",
|
| 338 |
+
"\n",
|
| 339 |
+
"set_samples = [s for s in square_color_dataset if s[\"tool_name\"] == \"set_square_color\"]\n",
|
| 340 |
+
"get_samples = [s for s in square_color_dataset if s[\"tool_name\"] == \"get_square_color\"]\n",
|
| 341 |
+
"\n",
|
| 342 |
+
"eval_test_cases = random.sample(set_samples, min(5, len(set_samples))) + \\\n",
|
| 343 |
+
" random.sample(get_samples, min(5, len(get_samples)))\n",
|
| 344 |
+
"\n",
|
| 345 |
+
"print(\"=\" * 50)\n",
|
| 346 |
+
"print(\"PRE-TRAINING EVALUATION (Baseline)\")\n",
|
| 347 |
+
"print(\"=\" * 50)\n",
|
| 348 |
+
"print(f\"\\nEvaluating base model on {len(eval_test_cases)} test cases...\\n\")\n",
|
| 349 |
+
"\n",
|
| 350 |
+
"baseline_results = evaluate_model(\n",
|
| 351 |
+
" model=model,\n",
|
| 352 |
+
" tokenizer=tokenizer,\n",
|
| 353 |
+
" test_samples=eval_test_cases,\n",
|
| 354 |
+
" tools=TOOLS,\n",
|
| 355 |
+
" system_prompt=SYSTEM_PROMPT\n",
|
| 356 |
+
")\n",
|
| 357 |
+
"\n",
|
| 358 |
+
"# Show some example outputs\n",
|
| 359 |
+
"print(\"\\n--- Sample Outputs (Base Model) ---\")\n",
|
| 360 |
+
"for i, detail in enumerate(baseline_results[\"details\"][:4]):\n",
|
| 361 |
+
" status = \"β
\" if detail[\"tool_correct\"] else \"β\"\n",
|
| 362 |
+
" print(f\"\\n{status} Input: {detail['input']}\")\n",
|
| 363 |
+
" print(f\" Expected: {detail['expected_tool']}\")\n",
|
| 364 |
+
" print(f\" Output: {detail['response'][:200]}...\")"
|
| 365 |
+
]
|
| 366 |
+
},
|
| 367 |
+
{
|
| 368 |
+
"cell_type": "markdown",
|
| 369 |
+
"metadata": {},
|
| 370 |
+
"source": [
|
| 371 |
+
"## π₯ 4. Fine-tuning"
|
| 372 |
+
]
|
| 373 |
+
},
|
| 374 |
+
{
|
| 375 |
+
"cell_type": "code",
|
| 376 |
+
"execution_count": null,
|
| 377 |
+
"metadata": {},
|
| 378 |
+
"outputs": [],
|
| 379 |
+
"source": [
|
| 380 |
+
"import torch\n",
|
| 381 |
+
"from transformers import AutoTokenizer, AutoModelForCausalLM\n",
|
| 382 |
+
"\n",
|
| 383 |
+
"print(\"Reloading model for fine-tuning (without quantization)...\")\n",
|
| 384 |
+
"\n",
|
| 385 |
+
"del model\n",
|
| 386 |
+
"torch.cuda.empty_cache()\n",
|
| 387 |
+
"\n",
|
| 388 |
+
"model = AutoModelForCausalLM.from_pretrained(\n",
|
| 389 |
+
" BASE_MODEL,\n",
|
| 390 |
+
" torch_dtype=torch.bfloat16,\n",
|
| 391 |
+
" device_map=\"auto\",\n",
|
| 392 |
+
" attn_implementation=\"eager\"\n",
|
| 393 |
+
")\n",
|
| 394 |
+
"\n",
|
| 395 |
+
"tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL)\n",
|
| 396 |
+
"\n",
|
| 397 |
+
"print(f\"Device: {model.device}\")\n",
|
| 398 |
+
"print(f\"DType: {model.dtype}\")\n",
|
| 399 |
+
"print(f\"Parameters: {model.num_parameters():,}\")\n",
|
| 400 |
+
"print(\"Ready for fine-tuning!\")"
|
| 401 |
+
]
|
| 402 |
+
},
|
| 403 |
+
{
|
| 404 |
+
"cell_type": "code",
|
| 405 |
+
"execution_count": null,
|
| 406 |
+
"metadata": {},
|
| 407 |
+
"outputs": [],
|
| 408 |
+
"source": [
|
| 409 |
+
"from trl import SFTConfig, SFTTrainer\n",
|
| 410 |
+
"\n",
|
| 411 |
+
"torch_dtype = model.dtype\n",
|
| 412 |
+
"\n",
|
| 413 |
+
"# Training configuration\n",
|
| 414 |
+
"args = SFTConfig(\n",
|
| 415 |
+
" output_dir=OUTPUT_DIR,\n",
|
| 416 |
+
" max_length=512,\n",
|
| 417 |
+
" packing=False,\n",
|
| 418 |
+
" num_train_epochs=NUM_EPOCHS,\n",
|
| 419 |
+
" per_device_train_batch_size=BATCH_SIZE,\n",
|
| 420 |
+
" gradient_checkpointing=False,\n",
|
| 421 |
+
" optim=\"adamw_torch_fused\",\n",
|
| 422 |
+
" logging_steps=1,\n",
|
| 423 |
+
" eval_strategy=\"epoch\",\n",
|
| 424 |
+
" save_strategy=\"epoch\",\n",
|
| 425 |
+
" learning_rate=LEARNING_RATE,\n",
|
| 426 |
+
" fp16=True if torch_dtype == torch.float16 else False,\n",
|
| 427 |
+
" bf16=True if torch_dtype == torch.bfloat16 else False,\n",
|
| 428 |
+
" lr_scheduler_type=\"constant\",\n",
|
| 429 |
+
" push_to_hub=True,\n",
|
| 430 |
+
" report_to=\"tensorboard\",\n",
|
| 431 |
+
" load_best_model_at_end=True,\n",
|
| 432 |
+
" metric_for_best_model=\"eval_loss\",\n",
|
| 433 |
+
")\n",
|
| 434 |
+
"\n",
|
| 435 |
+
"# Create trainer\n",
|
| 436 |
+
"trainer = SFTTrainer(\n",
|
| 437 |
+
" model=model,\n",
|
| 438 |
+
" args=args,\n",
|
| 439 |
+
" train_dataset=dataset['train'],\n",
|
| 440 |
+
" eval_dataset=dataset['test'],\n",
|
| 441 |
+
" processing_class=tokenizer,\n",
|
| 442 |
+
")\n",
|
| 443 |
+
"\n",
|
| 444 |
+
"print(\"Trainer created successfully!\")"
|
| 445 |
+
]
|
| 446 |
+
},
|
| 447 |
+
{
|
| 448 |
+
"cell_type": "code",
|
| 449 |
+
"execution_count": null,
|
| 450 |
+
"metadata": {},
|
| 451 |
+
"outputs": [],
|
| 452 |
+
"source": [
|
| 453 |
+
"# π Start training!\n",
|
| 454 |
+
"print(\"Starting fine-tuning...\")\n",
|
| 455 |
+
"trainer.train()\n",
|
| 456 |
+
"\n",
|
| 457 |
+
"print(\"\\nβ
Training complete!\")"
|
| 458 |
+
]
|
| 459 |
+
},
|
| 460 |
+
{
|
| 461 |
+
"cell_type": "code",
|
| 462 |
+
"execution_count": null,
|
| 463 |
+
"metadata": {},
|
| 464 |
+
"outputs": [],
|
| 465 |
+
"source": [
|
| 466 |
+
"# Save final model\n",
|
| 467 |
+
"trainer.save_model()\n",
|
| 468 |
+
"print(f\"Model saved to: {OUTPUT_DIR}\")"
|
| 469 |
+
]
|
| 470 |
+
},
|
| 471 |
+
{
|
| 472 |
+
"cell_type": "markdown",
|
| 473 |
+
"metadata": {},
|
| 474 |
+
"source": [
|
| 475 |
+
"## π 5. Visualize Results"
|
| 476 |
+
]
|
| 477 |
+
},
|
| 478 |
+
{
|
| 479 |
+
"cell_type": "code",
|
| 480 |
+
"execution_count": null,
|
| 481 |
+
"metadata": {},
|
| 482 |
+
"outputs": [],
|
| 483 |
+
"source": [
|
| 484 |
+
"import matplotlib.pyplot as plt\n",
|
| 485 |
+
"\n",
|
| 486 |
+
"# Extract loss history\n",
|
| 487 |
+
"log_history = trainer.state.log_history\n",
|
| 488 |
+
"\n",
|
| 489 |
+
"train_losses = [log[\"loss\"] for log in log_history if \"loss\" in log]\n",
|
| 490 |
+
"epoch_train = [log[\"epoch\"] for log in log_history if \"loss\" in log]\n",
|
| 491 |
+
"eval_losses = [log[\"eval_loss\"] for log in log_history if \"eval_loss\" in log]\n",
|
| 492 |
+
"epoch_eval = [log[\"epoch\"] for log in log_history if \"eval_loss\" in log]\n",
|
| 493 |
+
"\n",
|
| 494 |
+
"# Plot\n",
|
| 495 |
+
"plt.figure(figsize=(10, 6))\n",
|
| 496 |
+
"plt.plot(epoch_train, train_losses, label=\"Training Loss\", alpha=0.7)\n",
|
| 497 |
+
"plt.plot(epoch_eval, eval_losses, label=\"Validation Loss\", marker='o')\n",
|
| 498 |
+
"plt.xlabel(\"Epoch\")\n",
|
| 499 |
+
"plt.ylabel(\"Loss\")\n",
|
| 500 |
+
"plt.title(\"Training and Validation Loss\")\n",
|
| 501 |
+
"plt.legend()\n",
|
| 502 |
+
"plt.grid(True)\n",
|
| 503 |
+
"plt.show()"
|
| 504 |
+
]
|
| 505 |
+
},
|
| 506 |
+
{
|
| 507 |
+
"cell_type": "markdown",
|
| 508 |
+
"metadata": {},
|
| 509 |
+
"source": [
|
| 510 |
+
"## π§ͺ 6. Post-Training Evaluation\n",
|
| 511 |
+
"\n",
|
| 512 |
+
"Now let's evaluate the fine-tuned model and compare it with the baseline to measure the improvement."
|
| 513 |
+
]
|
| 514 |
+
},
|
| 515 |
+
{
|
| 516 |
+
"cell_type": "code",
|
| 517 |
+
"execution_count": null,
|
| 518 |
+
"metadata": {},
|
| 519 |
+
"outputs": [],
|
| 520 |
+
"source": [
|
| 521 |
+
"print(\"=\" * 50)\n",
|
| 522 |
+
"print(\"POST-TRAINING EVALUATION (Fine-tuned)\")\n",
|
| 523 |
+
"print(\"=\" * 50)\n",
|
| 524 |
+
"print(f\"\\nEvaluating fine-tuned model on {len(eval_test_cases)} test cases...\\n\")\n",
|
| 525 |
+
"\n",
|
| 526 |
+
"finetuned_results = evaluate_model(\n",
|
| 527 |
+
" model=model,\n",
|
| 528 |
+
" tokenizer=tokenizer,\n",
|
| 529 |
+
" test_samples=eval_test_cases,\n",
|
| 530 |
+
" tools=TOOLS,\n",
|
| 531 |
+
" system_prompt=SYSTEM_PROMPT\n",
|
| 532 |
+
")\n",
|
| 533 |
+
"\n",
|
| 534 |
+
"# Show some example outputs\n",
|
| 535 |
+
"print(\"\\n--- Sample Outputs (Fine-tuned Model) ---\")\n",
|
| 536 |
+
"for i, detail in enumerate(finetuned_results[\"details\"][:4]):\n",
|
| 537 |
+
" status = \"β
\" if detail[\"tool_correct\"] else \"β\"\n",
|
| 538 |
+
" print(f\"\\n{status} Input: {detail['input']}\")\n",
|
| 539 |
+
" print(f\" Expected: {detail['expected_tool']}\")\n",
|
| 540 |
+
" print(f\" Output: {detail['response'][:200]}...\")"
|
| 541 |
+
]
|
| 542 |
+
},
|
| 543 |
+
{
|
| 544 |
+
"cell_type": "code",
|
| 545 |
+
"execution_count": null,
|
| 546 |
+
"metadata": {},
|
| 547 |
+
"outputs": [],
|
| 548 |
+
"source": [
|
| 549 |
+
"# Compare baseline vs fine-tuned results\n",
|
| 550 |
+
"print(\"=\" * 60)\n",
|
| 551 |
+
"print(\"π COMPARISON: Baseline vs Fine-tuned\")\n",
|
| 552 |
+
"print(\"=\" * 60)\n",
|
| 553 |
+
"\n",
|
| 554 |
+
"print(f\"\\n{'Metric':<30} {'Baseline':>12} {'Fine-tuned':>12} {'Improvement':>12}\")\n",
|
| 555 |
+
"print(\"-\" * 66)\n",
|
| 556 |
+
"\n",
|
| 557 |
+
"# Tool accuracy comparison\n",
|
| 558 |
+
"tool_improvement = finetuned_results[\"tool_accuracy\"] - baseline_results[\"tool_accuracy\"]\n",
|
| 559 |
+
"print(f\"{'Tool Accuracy':<30} {baseline_results['tool_accuracy']:>11.1f}% {finetuned_results['tool_accuracy']:>11.1f}% {tool_improvement:>+11.1f}%\")\n",
|
| 560 |
+
"\n",
|
| 561 |
+
"# Full accuracy comparison\n",
|
| 562 |
+
"full_improvement = finetuned_results[\"full_accuracy\"] - baseline_results[\"full_accuracy\"]\n",
|
| 563 |
+
"print(f\"{'Full Accuracy (tool + args)':<30} {baseline_results['full_accuracy']:>11.1f}% {finetuned_results['full_accuracy']:>11.1f}% {full_improvement:>+11.1f}%\")\n",
|
| 564 |
+
"\n",
|
| 565 |
+
"print(\"-\" * 66)\n",
|
| 566 |
+
"\n",
|
| 567 |
+
"# Summary\n",
|
| 568 |
+
"if full_improvement > 0:\n",
|
| 569 |
+
" print(f\"\\nβ
Fine-tuning improved accuracy by {full_improvement:.1f} percentage points!\")\n",
|
| 570 |
+
"elif full_improvement == 0:\n",
|
| 571 |
+
" print(f\"\\nβ οΈ No change in accuracy. Consider adjusting training parameters.\")\n",
|
| 572 |
+
"else:\n",
|
| 573 |
+
" print(f\"\\nβ Accuracy decreased. Check for overfitting or data issues.\")"
|
| 574 |
+
]
|
| 575 |
+
},
|
| 576 |
+
{
|
| 577 |
+
"cell_type": "code",
|
| 578 |
+
"execution_count": null,
|
| 579 |
+
"metadata": {},
|
| 580 |
+
"outputs": [],
|
| 581 |
+
"source": [
|
| 582 |
+
"# Visualization: Baseline vs Fine-tuned comparison\n",
|
| 583 |
+
"import matplotlib.pyplot as plt\n",
|
| 584 |
+
"import numpy as np\n",
|
| 585 |
+
"\n",
|
| 586 |
+
"fig, axes = plt.subplots(1, 2, figsize=(14, 5))\n",
|
| 587 |
+
"\n",
|
| 588 |
+
"# Chart 1: Bar chart comparison\n",
|
| 589 |
+
"metrics = ['Tool\\nAccuracy', 'Full\\nAccuracy']\n",
|
| 590 |
+
"baseline_vals = [baseline_results[\"tool_accuracy\"], baseline_results[\"full_accuracy\"]]\n",
|
| 591 |
+
"finetuned_vals = [finetuned_results[\"tool_accuracy\"], finetuned_results[\"full_accuracy\"]]\n",
|
| 592 |
+
"\n",
|
| 593 |
+
"x = np.arange(len(metrics))\n",
|
| 594 |
+
"width = 0.35\n",
|
| 595 |
+
"\n",
|
| 596 |
+
"bars1 = axes[0].bar(x - width/2, baseline_vals, width, label='Baseline', color='#ff6b6b', alpha=0.8)\n",
|
| 597 |
+
"bars2 = axes[0].bar(x + width/2, finetuned_vals, width, label='Fine-tuned', color='#4ecdc4', alpha=0.8)\n",
|
| 598 |
+
"\n",
|
| 599 |
+
"axes[0].set_ylabel('Accuracy (%)')\n",
|
| 600 |
+
"axes[0].set_title('Model Performance: Baseline vs Fine-tuned')\n",
|
| 601 |
+
"axes[0].set_xticks(x)\n",
|
| 602 |
+
"axes[0].set_xticklabels(metrics)\n",
|
| 603 |
+
"axes[0].legend()\n",
|
| 604 |
+
"axes[0].set_ylim(0, 110)\n",
|
| 605 |
+
"axes[0].axhline(y=100, color='gray', linestyle='--', alpha=0.3)\n",
|
| 606 |
+
"\n",
|
| 607 |
+
"# Add value labels on bars\n",
|
| 608 |
+
"for bar in bars1:\n",
|
| 609 |
+
" height = bar.get_height()\n",
|
| 610 |
+
" axes[0].annotate(f'{height:.1f}%', xy=(bar.get_x() + bar.get_width() / 2, height),\n",
|
| 611 |
+
" xytext=(0, 3), textcoords=\"offset points\", ha='center', va='bottom', fontsize=10)\n",
|
| 612 |
+
"for bar in bars2:\n",
|
| 613 |
+
" height = bar.get_height()\n",
|
| 614 |
+
" axes[0].annotate(f'{height:.1f}%', xy=(bar.get_x() + bar.get_width() / 2, height),\n",
|
| 615 |
+
" xytext=(0, 3), textcoords=\"offset points\", ha='center', va='bottom', fontsize=10)\n",
|
| 616 |
+
"\n",
|
| 617 |
+
"# Chart 2: Per-sample comparison\n",
|
| 618 |
+
"sample_labels = [d[\"input\"][:20] + \"...\" for d in baseline_results[\"details\"]]\n",
|
| 619 |
+
"baseline_correct = [1 if d[\"tool_correct\"] else 0 for d in baseline_results[\"details\"]]\n",
|
| 620 |
+
"finetuned_correct = [1 if d[\"tool_correct\"] else 0 for d in finetuned_results[\"details\"]]\n",
|
| 621 |
+
"\n",
|
| 622 |
+
"x2 = np.arange(len(sample_labels))\n",
|
| 623 |
+
"width2 = 0.35\n",
|
| 624 |
+
"\n",
|
| 625 |
+
"axes[1].barh(x2 - width2/2, baseline_correct, width2, label='Baseline', color='#ff6b6b', alpha=0.8)\n",
|
| 626 |
+
"axes[1].barh(x2 + width2/2, finetuned_correct, width2, label='Fine-tuned', color='#4ecdc4', alpha=0.8)\n",
|
| 627 |
+
"\n",
|
| 628 |
+
"axes[1].set_xlabel('Correct (1) / Incorrect (0)')\n",
|
| 629 |
+
"axes[1].set_title('Per-Sample Results')\n",
|
| 630 |
+
"axes[1].set_yticks(x2)\n",
|
| 631 |
+
"axes[1].set_yticklabels(sample_labels, fontsize=8)\n",
|
| 632 |
+
"axes[1].legend(loc='lower right')\n",
|
| 633 |
+
"axes[1].set_xlim(-0.1, 1.5)\n",
|
| 634 |
+
"\n",
|
| 635 |
+
"plt.tight_layout()\n",
|
| 636 |
+
"plt.show()\n",
|
| 637 |
+
"\n",
|
| 638 |
+
"# Print detailed per-sample comparison\n",
|
| 639 |
+
"print(\"\\nπ Detailed Per-Sample Comparison:\")\n",
|
| 640 |
+
"print(\"-\" * 80)\n",
|
| 641 |
+
"for i, (b, f) in enumerate(zip(baseline_results[\"details\"], finetuned_results[\"details\"])):\n",
|
| 642 |
+
" b_status = \"β
\" if b[\"tool_correct\"] else \"β\"\n",
|
| 643 |
+
" f_status = \"β
\" if f[\"tool_correct\"] else \"β\"\n",
|
| 644 |
+
" change = \"\"\n",
|
| 645 |
+
" if not b[\"tool_correct\"] and f[\"tool_correct\"]:\n",
|
| 646 |
+
" change = \" π FIXED!\"\n",
|
| 647 |
+
" elif b[\"tool_correct\"] and not f[\"tool_correct\"]:\n",
|
| 648 |
+
" change = \" β οΈ REGRESSED\"\n",
|
| 649 |
+
" print(f\"{b['input'][:40]:<42} Base: {b_status} Fine-tuned: {f_status}{change}\")"
|
| 650 |
+
]
|
| 651 |
+
},
|
| 652 |
+
{
|
| 653 |
+
"cell_type": "markdown",
|
| 654 |
+
"metadata": {},
|
| 655 |
+
"source": [
|
| 656 |
+
"## π€ 7. Push to Hugging Face Hub"
|
| 657 |
+
]
|
| 658 |
+
},
|
| 659 |
+
{
|
| 660 |
+
"cell_type": "code",
|
| 661 |
+
"execution_count": null,
|
| 662 |
+
"metadata": {},
|
| 663 |
+
"outputs": [],
|
| 664 |
+
"source": [
|
| 665 |
+
"# Push to Hub\n",
|
| 666 |
+
"trainer.push_to_hub()\n",
|
| 667 |
+
"\n",
|
| 668 |
+
"print(f\"\\nβ
Model pushed to: https://huggingface.co/{trainer.hub_model_id}\")"
|
| 669 |
+
]
|
| 670 |
+
}
|
| 671 |
+
],
|
| 672 |
+
"metadata": {
|
| 673 |
+
"accelerator": "GPU",
|
| 674 |
+
"colab": {
|
| 675 |
+
"gpuType": "T4",
|
| 676 |
+
"provenance": []
|
| 677 |
+
},
|
| 678 |
+
"kernelspec": {
|
| 679 |
+
"display_name": "Python 3",
|
| 680 |
+
"language": "python",
|
| 681 |
+
"name": "python3"
|
| 682 |
+
},
|
| 683 |
+
"language_info": {
|
| 684 |
+
"name": "python",
|
| 685 |
+
"version": "3.10.0"
|
| 686 |
+
}
|
| 687 |
+
},
|
| 688 |
+
"nbformat": 4,
|
| 689 |
+
"nbformat_minor": 4
|
| 690 |
+
}
|
finetuning-functiongemma/finetune_functiongemma_v2.ipynb
ADDED
|
@@ -0,0 +1,635 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "markdown",
|
| 5 |
+
"metadata": {},
|
| 6 |
+
"source": [
|
| 7 |
+
"# π¨ Fine-tuning FunctionGemma for Square Color Control\n",
|
| 8 |
+
"\n",
|
| 9 |
+
"This notebook demonstrates how to fine-tune FunctionGemma to recognize color control commands.\n",
|
| 10 |
+
"\n",
|
| 11 |
+
"**Author:** Harlley Oliveira\n",
|
| 12 |
+
"**Portfolio:** AI Engineering\n",
|
| 13 |
+
"\n",
|
| 14 |
+
"## Objectives\n",
|
| 15 |
+
"1. Train the model to call `set_square_color` when the user wants to change the color\n",
|
| 16 |
+
"2. Train the model to call `get_square_color` when the user asks about the current color\n",
|
| 17 |
+
"3. Support various natural language command styles"
|
| 18 |
+
]
|
| 19 |
+
},
|
| 20 |
+
{
|
| 21 |
+
"cell_type": "markdown",
|
| 22 |
+
"metadata": {},
|
| 23 |
+
"source": [
|
| 24 |
+
"## π¦ 1. Setup and Installation"
|
| 25 |
+
]
|
| 26 |
+
},
|
| 27 |
+
{
|
| 28 |
+
"cell_type": "code",
|
| 29 |
+
"execution_count": null,
|
| 30 |
+
"metadata": {},
|
| 31 |
+
"outputs": [],
|
| 32 |
+
"source": [
|
| 33 |
+
"# Install dependencies\n",
|
| 34 |
+
"%pip install -q torch tensorboard\n",
|
| 35 |
+
"%pip install -q transformers datasets accelerate evaluate trl protobuf sentencepiece"
|
| 36 |
+
]
|
| 37 |
+
},
|
| 38 |
+
{
|
| 39 |
+
"cell_type": "code",
|
| 40 |
+
"execution_count": null,
|
| 41 |
+
"metadata": {},
|
| 42 |
+
"outputs": [],
|
| 43 |
+
"source": [
|
| 44 |
+
"# Login to Hugging Face Hub\n",
|
| 45 |
+
"from huggingface_hub import login\n",
|
| 46 |
+
"login()"
|
| 47 |
+
]
|
| 48 |
+
},
|
| 49 |
+
{
|
| 50 |
+
"cell_type": "code",
|
| 51 |
+
"execution_count": null,
|
| 52 |
+
"metadata": {},
|
| 53 |
+
"outputs": [],
|
| 54 |
+
"source": [
|
| 55 |
+
"# Configuration\n",
|
| 56 |
+
"BASE_MODEL = \"google/functiongemma-270m-it\"\n",
|
| 57 |
+
"OUTPUT_DIR = \"functiongemma-square-color\"\n",
|
| 58 |
+
"LEARNING_RATE = 5e-5\n",
|
| 59 |
+
"NUM_EPOCHS = 8\n",
|
| 60 |
+
"BATCH_SIZE = 4"
|
| 61 |
+
]
|
| 62 |
+
},
|
| 63 |
+
{
|
| 64 |
+
"cell_type": "markdown",
|
| 65 |
+
"metadata": {},
|
| 66 |
+
"source": [
|
| 67 |
+
"## π 2. Prepare Dataset with Correct Format"
|
| 68 |
+
]
|
| 69 |
+
},
|
| 70 |
+
{
|
| 71 |
+
"cell_type": "code",
|
| 72 |
+
"execution_count": null,
|
| 73 |
+
"metadata": {},
|
| 74 |
+
"outputs": [],
|
| 75 |
+
"source": [
|
| 76 |
+
"import json\n",
|
| 77 |
+
"from datasets import Dataset\n",
|
| 78 |
+
"\n",
|
| 79 |
+
"# Tool definitions (same as before)\n",
|
| 80 |
+
"def set_square_color(color: str) -> str:\n",
|
| 81 |
+
" \"\"\"\n",
|
| 82 |
+
" Sets the color of the square displayed on the screen.\n",
|
| 83 |
+
" \n",
|
| 84 |
+
" Args:\n",
|
| 85 |
+
" color: The color to set, e.g. red, blue, green\n",
|
| 86 |
+
" \"\"\"\n",
|
| 87 |
+
" return f\"Color set to {color}\"\n",
|
| 88 |
+
"\n",
|
| 89 |
+
"def get_square_color() -> str:\n",
|
| 90 |
+
" \"\"\"\n",
|
| 91 |
+
" Returns the current color of the square.\n",
|
| 92 |
+
" Use this when the user asks about the current color.\n",
|
| 93 |
+
" \"\"\"\n",
|
| 94 |
+
" return \"Current color\"\n",
|
| 95 |
+
"\n",
|
| 96 |
+
"# Get JSON schemas\n",
|
| 97 |
+
"from transformers.utils import get_json_schema\n",
|
| 98 |
+
"TOOLS = [\n",
|
| 99 |
+
" get_json_schema(set_square_color),\n",
|
| 100 |
+
" get_json_schema(get_square_color)\n",
|
| 101 |
+
"]\n",
|
| 102 |
+
"\n",
|
| 103 |
+
"print(\"Tool schemas:\")\n",
|
| 104 |
+
"print(json.dumps(TOOLS, indent=2))"
|
| 105 |
+
]
|
| 106 |
+
},
|
| 107 |
+
{
|
| 108 |
+
"cell_type": "code",
|
| 109 |
+
"execution_count": null,
|
| 110 |
+
"metadata": {},
|
| 111 |
+
"outputs": [],
|
| 112 |
+
"source": [
|
| 113 |
+
"# Load training dataset\n",
|
| 114 |
+
"with open(\"dataset/square_color_dataset.json\", \"r\") as f:\n",
|
| 115 |
+
" square_color_dataset = json.load(f)\n",
|
| 116 |
+
"\n",
|
| 117 |
+
"print(f\"Total examples: {len(square_color_dataset)}\")\n",
|
| 118 |
+
"print(f\" - SET: {len([x for x in square_color_dataset if x['tool_name'] == 'set_square_color'])}\")\n",
|
| 119 |
+
"print(f\" - GET: {len([x for x in square_color_dataset if x['tool_name'] == 'get_square_color'])}\")\n",
|
| 120 |
+
"\n",
|
| 121 |
+
"# Preview first few examples\n",
|
| 122 |
+
"print(\"\\nFirst 3 examples:\")\n",
|
| 123 |
+
"for i, sample in enumerate(square_color_dataset[:3]):\n",
|
| 124 |
+
" print(f\" {i+1}. \\\"{sample['user_content']}\\\" β {sample['tool_name']}\")"
|
| 125 |
+
]
|
| 126 |
+
},
|
| 127 |
+
{
|
| 128 |
+
"cell_type": "code",
|
| 129 |
+
"execution_count": null,
|
| 130 |
+
"metadata": {},
|
| 131 |
+
"outputs": [],
|
| 132 |
+
"source": [
|
| 133 |
+
"# CRITICAL: FunctionGemma's expected output format\n",
|
| 134 |
+
"# The model should output: <start_function_call>call:func{args}<end_function_call>\n",
|
| 135 |
+
"\n",
|
| 136 |
+
"SYSTEM_PROMPT = \"You are a model that can do function calling with the following functions\"\n",
|
| 137 |
+
"\n",
|
| 138 |
+
"def format_function_call_output(tool_name: str, tool_arguments: dict) -> str:\n",
|
| 139 |
+
" \"\"\"\n",
|
| 140 |
+
" Format the expected output in FunctionGemma's native format.\n",
|
| 141 |
+
" \n",
|
| 142 |
+
" FunctionGemma outputs: <start_function_call>call:func_name{arg:<escape>value<escape>}<end_function_call>\n",
|
| 143 |
+
" \"\"\"\n",
|
| 144 |
+
" if not tool_arguments:\n",
|
| 145 |
+
" # For functions with no arguments\n",
|
| 146 |
+
" return f\"<start_function_call>call:{tool_name}{{}}<end_function_call>\"\n",
|
| 147 |
+
" \n",
|
| 148 |
+
" # Format arguments with <escape> tokens for string values\n",
|
| 149 |
+
" args_parts = []\n",
|
| 150 |
+
" for key, value in tool_arguments.items():\n",
|
| 151 |
+
" if isinstance(value, str):\n",
|
| 152 |
+
" args_parts.append(f\"{key}:<escape>{value}<escape>\")\n",
|
| 153 |
+
" else:\n",
|
| 154 |
+
" args_parts.append(f\"{key}:{value}\")\n",
|
| 155 |
+
" \n",
|
| 156 |
+
" args_str = \",\".join(args_parts)\n",
|
| 157 |
+
" return f\"<start_function_call>call:{tool_name}{{{args_str}}}<end_function_call>\"\n",
|
| 158 |
+
"\n",
|
| 159 |
+
"# Test the format\n",
|
| 160 |
+
"print(\"Example outputs:\")\n",
|
| 161 |
+
"print(format_function_call_output(\"set_square_color\", {\"color\": \"blue\"}))\n",
|
| 162 |
+
"print(format_function_call_output(\"get_square_color\", {}))"
|
| 163 |
+
]
|
| 164 |
+
},
|
| 165 |
+
{
|
| 166 |
+
"cell_type": "code",
|
| 167 |
+
"execution_count": null,
|
| 168 |
+
"metadata": {},
|
| 169 |
+
"outputs": [],
|
| 170 |
+
"source": [
|
| 171 |
+
"from transformers import AutoTokenizer\n",
|
| 172 |
+
"\n",
|
| 173 |
+
"# Load tokenizer first to use apply_chat_template\n",
|
| 174 |
+
"tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL)\n",
|
| 175 |
+
"\n",
|
| 176 |
+
"def create_training_text(sample):\n",
|
| 177 |
+
" \"\"\"\n",
|
| 178 |
+
" Create the full training text using FunctionGemma's chat template.\n",
|
| 179 |
+
" \n",
|
| 180 |
+
" The key is that we format the assistant's response in FunctionGemma's\n",
|
| 181 |
+
" native function call format.\n",
|
| 182 |
+
" \"\"\"\n",
|
| 183 |
+
" tool_args = json.loads(sample[\"tool_arguments\"])\n",
|
| 184 |
+
" expected_output = format_function_call_output(sample[\"tool_name\"], tool_args)\n",
|
| 185 |
+
" \n",
|
| 186 |
+
" # Create messages - note: assistant content is the raw function call format\n",
|
| 187 |
+
" messages = [\n",
|
| 188 |
+
" {\"role\": \"developer\", \"content\": SYSTEM_PROMPT},\n",
|
| 189 |
+
" {\"role\": \"user\", \"content\": sample[\"user_content\"]},\n",
|
| 190 |
+
" {\"role\": \"assistant\", \"content\": expected_output},\n",
|
| 191 |
+
" ]\n",
|
| 192 |
+
" \n",
|
| 193 |
+
" # Apply chat template WITH tools to get proper function declarations\n",
|
| 194 |
+
" text = tokenizer.apply_chat_template(\n",
|
| 195 |
+
" messages,\n",
|
| 196 |
+
" tools=TOOLS,\n",
|
| 197 |
+
" tokenize=False,\n",
|
| 198 |
+
" add_generation_prompt=False\n",
|
| 199 |
+
" )\n",
|
| 200 |
+
" \n",
|
| 201 |
+
" return {\"text\": text}\n",
|
| 202 |
+
"\n",
|
| 203 |
+
"# Create dataset\n",
|
| 204 |
+
"dataset = Dataset.from_list(square_color_dataset)\n",
|
| 205 |
+
"dataset = dataset.map(create_training_text, remove_columns=dataset.features, batched=False)\n",
|
| 206 |
+
"\n",
|
| 207 |
+
"# Split 80/20\n",
|
| 208 |
+
"dataset = dataset.train_test_split(test_size=0.2, shuffle=True, seed=42)\n",
|
| 209 |
+
"\n",
|
| 210 |
+
"print(f\"Train: {len(dataset['train'])} examples\")\n",
|
| 211 |
+
"print(f\"Test: {len(dataset['test'])} examples\")"
|
| 212 |
+
]
|
| 213 |
+
},
|
| 214 |
+
{
|
| 215 |
+
"cell_type": "code",
|
| 216 |
+
"execution_count": null,
|
| 217 |
+
"metadata": {},
|
| 218 |
+
"outputs": [],
|
| 219 |
+
"source": [
|
| 220 |
+
"# Visualize a formatted example\n",
|
| 221 |
+
"print(\"=\" * 60)\n",
|
| 222 |
+
"print(\"FORMATTED TRAINING EXAMPLE\")\n",
|
| 223 |
+
"print(\"=\" * 60)\n",
|
| 224 |
+
"print(dataset[\"train\"][0][\"text\"])\n",
|
| 225 |
+
"print(\"=\" * 60)"
|
| 226 |
+
]
|
| 227 |
+
},
|
| 228 |
+
{
|
| 229 |
+
"cell_type": "markdown",
|
| 230 |
+
"metadata": {},
|
| 231 |
+
"source": [
|
| 232 |
+
"## π€ 3. Load Model"
|
| 233 |
+
]
|
| 234 |
+
},
|
| 235 |
+
{
|
| 236 |
+
"cell_type": "code",
|
| 237 |
+
"execution_count": null,
|
| 238 |
+
"metadata": {},
|
| 239 |
+
"outputs": [],
|
| 240 |
+
"source": [
|
| 241 |
+
"import torch\n",
|
| 242 |
+
"from transformers import AutoModelForCausalLM\n",
|
| 243 |
+
"\n",
|
| 244 |
+
"print(\"Loading model for fine-tuning...\")\n",
|
| 245 |
+
"\n",
|
| 246 |
+
"model = AutoModelForCausalLM.from_pretrained(\n",
|
| 247 |
+
" BASE_MODEL,\n",
|
| 248 |
+
" dtype=torch.bfloat16,\n",
|
| 249 |
+
" device_map=\"auto\",\n",
|
| 250 |
+
" attn_implementation=\"eager\"\n",
|
| 251 |
+
")\n",
|
| 252 |
+
"\n",
|
| 253 |
+
"print(f\"Device: {model.device}\")\n",
|
| 254 |
+
"print(f\"DType: {model.dtype}\")\n",
|
| 255 |
+
"print(f\"Parameters: {model.num_parameters():,}\")"
|
| 256 |
+
]
|
| 257 |
+
},
|
| 258 |
+
{
|
| 259 |
+
"cell_type": "markdown",
|
| 260 |
+
"metadata": {},
|
| 261 |
+
"source": [
|
| 262 |
+
"## π§ͺ 3.5. Pre-Training Evaluation (Baseline)"
|
| 263 |
+
]
|
| 264 |
+
},
|
| 265 |
+
{
|
| 266 |
+
"cell_type": "code",
|
| 267 |
+
"execution_count": null,
|
| 268 |
+
"metadata": {},
|
| 269 |
+
"outputs": [],
|
| 270 |
+
"source": [
|
| 271 |
+
"import re\n",
|
| 272 |
+
"\n",
|
| 273 |
+
"def extract_function_call(text):\n",
|
| 274 |
+
" \"\"\"\n",
|
| 275 |
+
" Extract function call from FunctionGemma's output format.\n",
|
| 276 |
+
" Returns (function_name, arguments_dict) or (None, None) if not found.\n",
|
| 277 |
+
" \"\"\"\n",
|
| 278 |
+
" pattern = r\"<start_function_call>call:(\\w+)\\{(.*)\\}<end_function_call>\"\n",
|
| 279 |
+
" match = re.search(pattern, text, re.DOTALL)\n",
|
| 280 |
+
" \n",
|
| 281 |
+
" if not match:\n",
|
| 282 |
+
" return None, None\n",
|
| 283 |
+
" \n",
|
| 284 |
+
" func_name = match.group(1)\n",
|
| 285 |
+
" args_str = match.group(2)\n",
|
| 286 |
+
" \n",
|
| 287 |
+
" # Parse arguments\n",
|
| 288 |
+
" args = {}\n",
|
| 289 |
+
" if args_str.strip():\n",
|
| 290 |
+
" # Match key:<escape>value<escape> or key:value patterns\n",
|
| 291 |
+
" arg_pattern = r\"(\\w+):(?:<escape>(.*?)<escape>|([^,}]*))\"\n",
|
| 292 |
+
" for m in re.finditer(arg_pattern, args_str):\n",
|
| 293 |
+
" key = m.group(1)\n",
|
| 294 |
+
" value = m.group(2) if m.group(2) else m.group(3)\n",
|
| 295 |
+
" args[key] = value.strip() if value else \"\"\n",
|
| 296 |
+
" \n",
|
| 297 |
+
" return func_name, args\n",
|
| 298 |
+
"\n",
|
| 299 |
+
"def evaluate_model(model, tokenizer, test_samples, tools, system_prompt, verbose=True):\n",
|
| 300 |
+
" \"\"\"\n",
|
| 301 |
+
" Evaluate model on test samples using FunctionGemma's format.\n",
|
| 302 |
+
" \"\"\"\n",
|
| 303 |
+
" results = {\n",
|
| 304 |
+
" \"total\": len(test_samples),\n",
|
| 305 |
+
" \"correct\": 0,\n",
|
| 306 |
+
" \"correct_tool\": 0,\n",
|
| 307 |
+
" \"correct_args\": 0,\n",
|
| 308 |
+
" \"details\": []\n",
|
| 309 |
+
" }\n",
|
| 310 |
+
" \n",
|
| 311 |
+
" for sample in test_samples:\n",
|
| 312 |
+
" messages = [\n",
|
| 313 |
+
" {\"role\": \"developer\", \"content\": system_prompt},\n",
|
| 314 |
+
" {\"role\": \"user\", \"content\": sample[\"user_content\"]},\n",
|
| 315 |
+
" ]\n",
|
| 316 |
+
" \n",
|
| 317 |
+
" inputs = tokenizer.apply_chat_template(\n",
|
| 318 |
+
" messages,\n",
|
| 319 |
+
" tools=tools,\n",
|
| 320 |
+
" tokenize=True,\n",
|
| 321 |
+
" add_generation_prompt=True,\n",
|
| 322 |
+
" return_dict=True,\n",
|
| 323 |
+
" return_tensors=\"pt\"\n",
|
| 324 |
+
" ).to(model.device)\n",
|
| 325 |
+
" \n",
|
| 326 |
+
" with torch.no_grad():\n",
|
| 327 |
+
" output = model.generate(\n",
|
| 328 |
+
" **inputs,\n",
|
| 329 |
+
" max_new_tokens=128,\n",
|
| 330 |
+
" do_sample=False,\n",
|
| 331 |
+
" )\n",
|
| 332 |
+
" \n",
|
| 333 |
+
" input_length = inputs['input_ids'].shape[1]\n",
|
| 334 |
+
" response = tokenizer.decode(output[0][input_length:], skip_special_tokens=False)\n",
|
| 335 |
+
" \n",
|
| 336 |
+
" # Parse the function call from response\n",
|
| 337 |
+
" called_func, called_args = extract_function_call(response)\n",
|
| 338 |
+
" \n",
|
| 339 |
+
" # Check if correct tool was called\n",
|
| 340 |
+
" tool_correct = called_func == sample[\"tool_name\"]\n",
|
| 341 |
+
" \n",
|
| 342 |
+
" # Check arguments\n",
|
| 343 |
+
" args_correct = False\n",
|
| 344 |
+
" expected_args = json.loads(sample[\"tool_arguments\"])\n",
|
| 345 |
+
" \n",
|
| 346 |
+
" if tool_correct:\n",
|
| 347 |
+
" if sample[\"tool_name\"] == \"get_square_color\":\n",
|
| 348 |
+
" args_correct = True # No args needed\n",
|
| 349 |
+
" elif called_args and \"color\" in called_args:\n",
|
| 350 |
+
" args_correct = called_args.get(\"color\", \"\").lower() == expected_args.get(\"color\", \"\").lower()\n",
|
| 351 |
+
" \n",
|
| 352 |
+
" if tool_correct:\n",
|
| 353 |
+
" results[\"correct_tool\"] += 1\n",
|
| 354 |
+
" if tool_correct and args_correct:\n",
|
| 355 |
+
" results[\"correct\"] += 1\n",
|
| 356 |
+
" results[\"correct_args\"] += 1\n",
|
| 357 |
+
" \n",
|
| 358 |
+
" results[\"details\"].append({\n",
|
| 359 |
+
" \"input\": sample[\"user_content\"],\n",
|
| 360 |
+
" \"expected_tool\": sample[\"tool_name\"],\n",
|
| 361 |
+
" \"expected_args\": sample[\"tool_arguments\"],\n",
|
| 362 |
+
" \"called_func\": called_func,\n",
|
| 363 |
+
" \"called_args\": called_args,\n",
|
| 364 |
+
" \"response\": response,\n",
|
| 365 |
+
" \"tool_correct\": tool_correct,\n",
|
| 366 |
+
" \"args_correct\": args_correct\n",
|
| 367 |
+
" })\n",
|
| 368 |
+
" \n",
|
| 369 |
+
" results[\"tool_accuracy\"] = results[\"correct_tool\"] / results[\"total\"] * 100\n",
|
| 370 |
+
" results[\"full_accuracy\"] = results[\"correct\"] / results[\"total\"] * 100\n",
|
| 371 |
+
" \n",
|
| 372 |
+
" if verbose:\n",
|
| 373 |
+
" print(f\"Tool Accuracy: {results['correct_tool']}/{results['total']} ({results['tool_accuracy']:.1f}%)\")\n",
|
| 374 |
+
" print(f\"Full Accuracy (tool + args): {results['correct']}/{results['total']} ({results['full_accuracy']:.1f}%)\")\n",
|
| 375 |
+
" \n",
|
| 376 |
+
" return results"
|
| 377 |
+
]
|
| 378 |
+
},
|
| 379 |
+
{
|
| 380 |
+
"cell_type": "code",
|
| 381 |
+
"execution_count": null,
|
| 382 |
+
"metadata": {},
|
| 383 |
+
"outputs": [],
|
| 384 |
+
"source": [
|
| 385 |
+
"# Create evaluation test set\n",
|
| 386 |
+
"import random\n",
|
| 387 |
+
"\n",
|
| 388 |
+
"random.seed(42)\n",
|
| 389 |
+
"\n",
|
| 390 |
+
"set_samples = [s for s in square_color_dataset if s[\"tool_name\"] == \"set_square_color\"]\n",
|
| 391 |
+
"get_samples = [s for s in square_color_dataset if s[\"tool_name\"] == \"get_square_color\"]\n",
|
| 392 |
+
"\n",
|
| 393 |
+
"test_cases = 25\n",
|
| 394 |
+
"eval_test_cases = random.sample(set_samples, min(test_cases, len(set_samples))) + \\\n",
|
| 395 |
+
" random.sample(get_samples, min(test_cases, len(get_samples)))\n",
|
| 396 |
+
"\n",
|
| 397 |
+
"print(\"=\" * 50)\n",
|
| 398 |
+
"print(\"PRE-TRAINING EVALUATION (Baseline)\")\n",
|
| 399 |
+
"print(\"=\" * 50)\n",
|
| 400 |
+
"print(f\"\\nEvaluating base model on {len(eval_test_cases)} test cases...\\n\")\n",
|
| 401 |
+
"\n",
|
| 402 |
+
"baseline_results = evaluate_model(\n",
|
| 403 |
+
" model=model,\n",
|
| 404 |
+
" tokenizer=tokenizer,\n",
|
| 405 |
+
" test_samples=eval_test_cases,\n",
|
| 406 |
+
" tools=TOOLS,\n",
|
| 407 |
+
" system_prompt=SYSTEM_PROMPT\n",
|
| 408 |
+
")\n",
|
| 409 |
+
"\n",
|
| 410 |
+
"# Show sample outputs\n",
|
| 411 |
+
"print(\"\\n--- Sample Outputs (Base Model) ---\")\n",
|
| 412 |
+
"for i, detail in enumerate(baseline_results[\"details\"][:4]):\n",
|
| 413 |
+
" status = \"β
\" if detail[\"tool_correct\"] else \"β\"\n",
|
| 414 |
+
" print(f\"\\n{status} Input: {detail['input']}\")\n",
|
| 415 |
+
" print(f\" Expected: {detail['expected_tool']}\")\n",
|
| 416 |
+
" print(f\" Got: {detail['called_func']} with args {detail['called_args']}\")"
|
| 417 |
+
]
|
| 418 |
+
},
|
| 419 |
+
{
|
| 420 |
+
"cell_type": "markdown",
|
| 421 |
+
"metadata": {},
|
| 422 |
+
"source": [
|
| 423 |
+
"## π₯ 4. Fine-tuning"
|
| 424 |
+
]
|
| 425 |
+
},
|
| 426 |
+
{
|
| 427 |
+
"cell_type": "code",
|
| 428 |
+
"execution_count": null,
|
| 429 |
+
"metadata": {},
|
| 430 |
+
"outputs": [],
|
| 431 |
+
"source": [
|
| 432 |
+
"from trl import SFTConfig, SFTTrainer\n",
|
| 433 |
+
"\n",
|
| 434 |
+
"torch_dtype = model.dtype\n",
|
| 435 |
+
"\n",
|
| 436 |
+
"# Training configuration\n",
|
| 437 |
+
"args = SFTConfig(\n",
|
| 438 |
+
" output_dir=OUTPUT_DIR,\n",
|
| 439 |
+
" max_length=512,\n",
|
| 440 |
+
" packing=False,\n",
|
| 441 |
+
" num_train_epochs=NUM_EPOCHS,\n",
|
| 442 |
+
" per_device_train_batch_size=BATCH_SIZE,\n",
|
| 443 |
+
" gradient_checkpointing=False,\n",
|
| 444 |
+
" optim=\"adamw_torch_fused\",\n",
|
| 445 |
+
" logging_steps=1,\n",
|
| 446 |
+
" eval_strategy=\"epoch\",\n",
|
| 447 |
+
" save_strategy=\"epoch\",\n",
|
| 448 |
+
" learning_rate=LEARNING_RATE,\n",
|
| 449 |
+
" fp16=True if torch_dtype == torch.float16 else False,\n",
|
| 450 |
+
" bf16=True if torch_dtype == torch.bfloat16 else False,\n",
|
| 451 |
+
" lr_scheduler_type=\"constant\",\n",
|
| 452 |
+
" push_to_hub=True,\n",
|
| 453 |
+
" report_to=\"tensorboard\",\n",
|
| 454 |
+
" load_best_model_at_end=True,\n",
|
| 455 |
+
" metric_for_best_model=\"eval_loss\",\n",
|
| 456 |
+
" dataset_text_field=\"text\", # IMPORTANT: specify the text field\n",
|
| 457 |
+
")\n",
|
| 458 |
+
"\n",
|
| 459 |
+
"# Create trainer\n",
|
| 460 |
+
"trainer = SFTTrainer(\n",
|
| 461 |
+
" model=model,\n",
|
| 462 |
+
" args=args,\n",
|
| 463 |
+
" train_dataset=dataset['train'],\n",
|
| 464 |
+
" eval_dataset=dataset['test'],\n",
|
| 465 |
+
" processing_class=tokenizer,\n",
|
| 466 |
+
")\n",
|
| 467 |
+
"\n",
|
| 468 |
+
"print(\"Trainer created successfully!\")"
|
| 469 |
+
]
|
| 470 |
+
},
|
| 471 |
+
{
|
| 472 |
+
"cell_type": "code",
|
| 473 |
+
"execution_count": null,
|
| 474 |
+
"metadata": {},
|
| 475 |
+
"outputs": [],
|
| 476 |
+
"source": [
|
| 477 |
+
"# π Start training!\n",
|
| 478 |
+
"print(\"Starting fine-tuning...\")\n",
|
| 479 |
+
"trainer.train()\n",
|
| 480 |
+
"\n",
|
| 481 |
+
"print(\"\\nβ
Training complete!\")"
|
| 482 |
+
]
|
| 483 |
+
},
|
| 484 |
+
{
|
| 485 |
+
"cell_type": "code",
|
| 486 |
+
"execution_count": null,
|
| 487 |
+
"metadata": {},
|
| 488 |
+
"outputs": [],
|
| 489 |
+
"source": [
|
| 490 |
+
"# Save final model in the original dtype (BF16)\n",
|
| 491 |
+
"# This prevents the model from being saved as FP32 (which doubles the size)\n",
|
| 492 |
+
"model.save_pretrained(OUTPUT_DIR, safe_serialization=True)\n",
|
| 493 |
+
"tokenizer.save_pretrained(OUTPUT_DIR)\n",
|
| 494 |
+
"print(f\"Model saved to: {OUTPUT_DIR}\")"
|
| 495 |
+
]
|
| 496 |
+
},
|
| 497 |
+
{
|
| 498 |
+
"cell_type": "markdown",
|
| 499 |
+
"metadata": {},
|
| 500 |
+
"source": [
|
| 501 |
+
"## π 5. Visualize Results"
|
| 502 |
+
]
|
| 503 |
+
},
|
| 504 |
+
{
|
| 505 |
+
"cell_type": "code",
|
| 506 |
+
"execution_count": null,
|
| 507 |
+
"metadata": {},
|
| 508 |
+
"outputs": [],
|
| 509 |
+
"source": [
|
| 510 |
+
"import matplotlib.pyplot as plt\n",
|
| 511 |
+
"\n",
|
| 512 |
+
"# Extract loss history\n",
|
| 513 |
+
"log_history = trainer.state.log_history\n",
|
| 514 |
+
"\n",
|
| 515 |
+
"train_losses = [log[\"loss\"] for log in log_history if \"loss\" in log]\n",
|
| 516 |
+
"epoch_train = [log[\"epoch\"] for log in log_history if \"loss\" in log]\n",
|
| 517 |
+
"eval_losses = [log[\"eval_loss\"] for log in log_history if \"eval_loss\" in log]\n",
|
| 518 |
+
"epoch_eval = [log[\"epoch\"] for log in log_history if \"eval_loss\" in log]\n",
|
| 519 |
+
"\n",
|
| 520 |
+
"# Plot\n",
|
| 521 |
+
"plt.figure(figsize=(10, 6))\n",
|
| 522 |
+
"plt.plot(epoch_train, train_losses, label=\"Training Loss\", alpha=0.7)\n",
|
| 523 |
+
"plt.plot(epoch_eval, eval_losses, label=\"Validation Loss\", marker='o')\n",
|
| 524 |
+
"plt.xlabel(\"Epoch\")\n",
|
| 525 |
+
"plt.ylabel(\"Loss\")\n",
|
| 526 |
+
"plt.title(\"Training and Validation Loss\")\n",
|
| 527 |
+
"plt.legend()\n",
|
| 528 |
+
"plt.grid(True)\n",
|
| 529 |
+
"plt.show()"
|
| 530 |
+
]
|
| 531 |
+
},
|
| 532 |
+
{
|
| 533 |
+
"cell_type": "markdown",
|
| 534 |
+
"metadata": {},
|
| 535 |
+
"source": [
|
| 536 |
+
"## π§ͺ 6. Post-Training Evaluation"
|
| 537 |
+
]
|
| 538 |
+
},
|
| 539 |
+
{
|
| 540 |
+
"cell_type": "code",
|
| 541 |
+
"execution_count": null,
|
| 542 |
+
"metadata": {},
|
| 543 |
+
"outputs": [],
|
| 544 |
+
"source": [
|
| 545 |
+
"print(\"=\" * 50)\n",
|
| 546 |
+
"print(\"POST-TRAINING EVALUATION (Fine-tuned)\")\n",
|
| 547 |
+
"print(\"=\" * 50)\n",
|
| 548 |
+
"print(f\"\\nEvaluating fine-tuned model on {len(eval_test_cases)} test cases...\\n\")\n",
|
| 549 |
+
"\n",
|
| 550 |
+
"finetuned_results = evaluate_model(\n",
|
| 551 |
+
" model=model,\n",
|
| 552 |
+
" tokenizer=tokenizer,\n",
|
| 553 |
+
" test_samples=eval_test_cases,\n",
|
| 554 |
+
" tools=TOOLS,\n",
|
| 555 |
+
" system_prompt=SYSTEM_PROMPT\n",
|
| 556 |
+
")\n",
|
| 557 |
+
"\n",
|
| 558 |
+
"# Show sample outputs\n",
|
| 559 |
+
"print(\"\\n--- Sample Outputs (Fine-tuned Model) ---\")\n",
|
| 560 |
+
"for i, detail in enumerate(finetuned_results[\"details\"][:4]):\n",
|
| 561 |
+
" status = \"β
\" if detail[\"tool_correct\"] else \"β\"\n",
|
| 562 |
+
" print(f\"\\n{status} Input: {detail['input']}\")\n",
|
| 563 |
+
" print(f\" Expected: {detail['expected_tool']}\")\n",
|
| 564 |
+
" print(f\" Got: {detail['called_func']} with args {detail['called_args']}\")"
|
| 565 |
+
]
|
| 566 |
+
},
|
| 567 |
+
{
|
| 568 |
+
"cell_type": "code",
|
| 569 |
+
"execution_count": null,
|
| 570 |
+
"metadata": {},
|
| 571 |
+
"outputs": [],
|
| 572 |
+
"source": [
|
| 573 |
+
"# Compare baseline vs fine-tuned\n",
|
| 574 |
+
"print(\"=\" * 60)\n",
|
| 575 |
+
"print(\"π COMPARISON: Baseline vs Fine-tuned\")\n",
|
| 576 |
+
"print(\"=\" * 60)\n",
|
| 577 |
+
"\n",
|
| 578 |
+
"print(f\"\\n{'Metric':<30} {'Baseline':>12} {'Fine-tuned':>12} {'Improvement':>12}\")\n",
|
| 579 |
+
"print(\"-\" * 66)\n",
|
| 580 |
+
"\n",
|
| 581 |
+
"tool_improvement = finetuned_results[\"tool_accuracy\"] - baseline_results[\"tool_accuracy\"]\n",
|
| 582 |
+
"print(f\"{'Tool Accuracy':<30} {baseline_results['tool_accuracy']:>11.1f}% {finetuned_results['tool_accuracy']:>11.1f}% {tool_improvement:>+11.1f}%\")\n",
|
| 583 |
+
"\n",
|
| 584 |
+
"full_improvement = finetuned_results[\"full_accuracy\"] - baseline_results[\"full_accuracy\"]\n",
|
| 585 |
+
"print(f\"{'Full Accuracy (tool + args)':<30} {baseline_results['full_accuracy']:>11.1f}% {finetuned_results['full_accuracy']:>11.1f}% {full_improvement:>+11.1f}%\")\n",
|
| 586 |
+
"\n",
|
| 587 |
+
"print(\"-\" * 66)\n",
|
| 588 |
+
"\n",
|
| 589 |
+
"if full_improvement > 0:\n",
|
| 590 |
+
" print(f\"\\nβ
Fine-tuning improved accuracy by {full_improvement:.1f} percentage points!\")\n",
|
| 591 |
+
"elif full_improvement == 0:\n",
|
| 592 |
+
" print(f\"\\nβ οΈ No change in accuracy.\")\n",
|
| 593 |
+
"else:\n",
|
| 594 |
+
" print(f\"\\nβ Accuracy decreased. Check for overfitting or data issues.\")"
|
| 595 |
+
]
|
| 596 |
+
},
|
| 597 |
+
{
|
| 598 |
+
"cell_type": "markdown",
|
| 599 |
+
"metadata": {},
|
| 600 |
+
"source": [
|
| 601 |
+
"## π€ 7. Push to Hugging Face Hub"
|
| 602 |
+
]
|
| 603 |
+
},
|
| 604 |
+
{
|
| 605 |
+
"cell_type": "code",
|
| 606 |
+
"execution_count": null,
|
| 607 |
+
"metadata": {},
|
| 608 |
+
"outputs": [],
|
| 609 |
+
"source": [
|
| 610 |
+
"# Push to Hub\n",
|
| 611 |
+
"trainer.push_to_hub()\n",
|
| 612 |
+
"\n",
|
| 613 |
+
"print(f\"\\nβ
Model pushed to: https://huggingface.co/{trainer.hub_model_id}\")"
|
| 614 |
+
]
|
| 615 |
+
}
|
| 616 |
+
],
|
| 617 |
+
"metadata": {
|
| 618 |
+
"accelerator": "GPU",
|
| 619 |
+
"colab": {
|
| 620 |
+
"gpuType": "T4",
|
| 621 |
+
"provenance": []
|
| 622 |
+
},
|
| 623 |
+
"kernelspec": {
|
| 624 |
+
"display_name": "Python 3",
|
| 625 |
+
"language": "python",
|
| 626 |
+
"name": "python3"
|
| 627 |
+
},
|
| 628 |
+
"language_info": {
|
| 629 |
+
"name": "python",
|
| 630 |
+
"version": "3.10.0"
|
| 631 |
+
}
|
| 632 |
+
},
|
| 633 |
+
"nbformat": 4,
|
| 634 |
+
"nbformat_minor": 4
|
| 635 |
+
}
|
src/worker.ts
CHANGED
|
@@ -31,7 +31,7 @@ function getModel(onProgress?: ProgressCallback) {
|
|
| 31 |
progress_callback: onProgress,
|
| 32 |
}),
|
| 33 |
AutoModelForCausalLM.from_pretrained(MODEL_ID, {
|
| 34 |
-
dtype: "
|
| 35 |
device: "webgpu",
|
| 36 |
progress_callback: onProgress,
|
| 37 |
}),
|
|
|
|
| 31 |
progress_callback: onProgress,
|
| 32 |
}),
|
| 33 |
AutoModelForCausalLM.from_pretrained(MODEL_ID, {
|
| 34 |
+
dtype: "fp16",
|
| 35 |
device: "webgpu",
|
| 36 |
progress_callback: onProgress,
|
| 37 |
}),
|