Spaces:
Runtime error
Runtime error
| import torch | |
| from torch import nn | |
| from .vision_encoder import VisionEncoder | |
| from .configuration_moondream import MoondreamConfig | |
| from transformers import PreTrainedModel | |
| import re | |
| from .modeling_phi import PhiForCausalLM | |
| from .configuration_moondream import PhiConfig | |
| class Moondream(PreTrainedModel): | |
| config_class = MoondreamConfig | |
| def __init__(self, config): | |
| super().__init__(config) | |
| self.vision_encoder = VisionEncoder() | |
| if type(config.phi_config) == dict: | |
| phi_config = PhiConfig(**config.phi_config) | |
| else: | |
| phi_config = config.phi_config | |
| self.text_model = PhiForCausalLM(phi_config) | |
| def device(self): | |
| return self.text_model.device | |
| def encode_image(self, image): | |
| return self.vision_encoder(image) | |
| def input_embeds(self, prompt, image_embeds, tokenizer): | |
| def _tokenize(txt): | |
| return tokenizer( | |
| txt, return_tensors="pt", add_special_tokens=False | |
| ).input_ids.to(self.device) | |
| text_emb = self.text_model.get_input_embeddings() | |
| # Add BOS token | |
| embeds = [] | |
| embeds.append( | |
| text_emb((torch.tensor([[tokenizer.bos_token_id]], device=self.device))) | |
| ) | |
| if "<image>" not in prompt: | |
| embeds.append(text_emb(_tokenize(prompt))) | |
| else: | |
| assert prompt.count("<image>") == 1 | |
| before, after = prompt.split("<image>") | |
| embeds.append(text_emb(_tokenize(f"{before}<image>"))) | |
| embeds.append(image_embeds.to(self.device)) | |
| embeds.append(text_emb(_tokenize(f"</image>{after}"))) | |
| return torch.cat(embeds, dim=1) | |
| def generate( | |
| self, | |
| image_embeds, | |
| prompt, | |
| tokenizer, | |
| eos_text="<END>", | |
| max_new_tokens=128, | |
| **kwargs, | |
| ): | |
| eos_tokens = tokenizer(eos_text, add_special_tokens=False)[0].ids | |
| generate_config = { | |
| "eos_token_id": eos_tokens, | |
| "bos_token_id": tokenizer.bos_token_id, | |
| "pad_token_id": tokenizer.eos_token_id, | |
| "max_new_tokens": max_new_tokens, | |
| **kwargs, | |
| } | |
| with torch.no_grad(): | |
| inputs_embeds = self.input_embeds(prompt, image_embeds, tokenizer) | |
| output_ids = self.text_model.generate( | |
| inputs_embeds=inputs_embeds, **generate_config | |
| ) | |
| return tokenizer.batch_decode(output_ids, skip_special_tokens=True) | |
| def answer_question( | |
| self, | |
| image_embeds, | |
| question, | |
| tokenizer, | |
| chat_history="", | |
| result_queue=None, | |
| **kwargs, | |
| ): | |
| prompt = f"<image>\n\n{chat_history}Question: {question}\n\nAnswer: " | |
| answer = self.generate( | |
| image_embeds, | |
| prompt, | |
| eos_text="<END>", | |
| tokenizer=tokenizer, | |
| max_new_tokens=256, | |
| **kwargs, | |
| )[0] | |
| cleaned_answer = re.sub("<$", "", re.sub("END$", "", answer)).strip() | |
| # Use the result_queue to pass the result if it is provided | |
| if result_queue: | |
| result_queue.put(cleaned_answer) | |
| else: | |
| return cleaned_answer | |