|
|
from __future__ import annotations |
|
|
|
|
|
import pandas as pd |
|
|
import requests |
|
|
from huggingface_hub.hf_api import SpaceInfo |
|
|
|
|
|
|
|
|
class PaperList: |
|
|
def __init__(self): |
|
|
self.organization_name = 'ICLR2023' |
|
|
self.table = pd.read_csv('iclr_submissions.csv') |
|
|
self._preprocess_table() |
|
|
|
|
|
self.table_header = ''' |
|
|
<tr> |
|
|
<td width="25%">Title</td> |
|
|
<td width="5%">PDF</td> |
|
|
<td width="20%">Tldr</td> |
|
|
<td width="50%">Abstract</td> |
|
|
</tr>''' |
|
|
|
|
|
@staticmethod |
|
|
def load_space_info(author: str) -> list[SpaceInfo]: |
|
|
path = 'https://huggingface.co/api/spaces' |
|
|
r = requests.get(path, params={'author': author}) |
|
|
d = r.json() |
|
|
return [SpaceInfo(**x) for x in d] |
|
|
|
|
|
def add_spaces_to_table(self, organization_name: str, |
|
|
df: pd.DataFrame) -> pd.DataFrame: |
|
|
spaces = self.load_space_info(organization_name) |
|
|
name2space = { |
|
|
s.id.split('/')[1].lower(): f'https://huggingface.co/spaces/{s.id}' |
|
|
for s in spaces |
|
|
} |
|
|
return df |
|
|
|
|
|
def _preprocess_table(self) -> None: |
|
|
self.table = self.add_spaces_to_table(self.organization_name, |
|
|
self.table) |
|
|
self.table['title_lowercase'] = self.table.title.str.lower() |
|
|
|
|
|
rows = [] |
|
|
for row in self.table.itertuples(): |
|
|
paper = f'<a href="{row.url}" target="_blank">{row.title}</a>' if isinstance( |
|
|
row.url, str) else row.title |
|
|
pdf = f'<a href="{row.pdf}" target="_blank">pdf</a>' if isinstance( |
|
|
row.pdf, str) else '' |
|
|
tldr = row.tldr if isinstance(row.tldr, str) else '' |
|
|
|
|
|
row = f''' |
|
|
<tr> |
|
|
<td>{paper}</td> |
|
|
<td>{pdf}</td> |
|
|
<td>{tldr}</td> |
|
|
<td>{row.abstract}</td> |
|
|
</tr>''' |
|
|
rows.append(row) |
|
|
self.table['html_table_content'] = rows |
|
|
|
|
|
def render(self, search_query: str, case_sensitive: bool) -> tuple[int, str]: |
|
|
df = self.add_spaces_to_table(self.organization_name, self.table) |
|
|
if search_query: |
|
|
if case_sensitive: |
|
|
df = df[df.title.str.contains(search_query)] |
|
|
else: |
|
|
df = df[df.title_lowercase.str.contains(search_query.lower())] |
|
|
|
|
|
return len(df), self.to_html(df, self.table_header) |
|
|
|
|
|
@staticmethod |
|
|
def to_html(df: pd.DataFrame, table_header: str) -> str: |
|
|
table_data = ''.join(df.html_table_content) |
|
|
html = f''' |
|
|
<table> |
|
|
{table_header} |
|
|
{table_data} |
|
|
</table>''' |
|
|
return html |
|
|
|