Update app.py
Browse files
app.py
CHANGED
|
@@ -33,6 +33,1924 @@ import re
|
|
| 33 |
import requests
|
| 34 |
import json
|
| 35 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
app = Flask(__name__)
|
| 37 |
CORS(app)
|
| 38 |
|
|
@@ -68,12 +1986,150 @@ llm = ChatGoogleGenerativeAI(
|
|
| 68 |
# Initialize translator
|
| 69 |
translator = Translator()
|
| 70 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
def detect_sinhala_content(text: str) -> bool:
|
| 72 |
"""Detect if text contains Sinhala characters"""
|
| 73 |
# Sinhala Unicode range: U+0D80 to U+0DFF
|
| 74 |
sinhala_pattern = re.compile(r'[\u0D80-\u0DFF]')
|
| 75 |
return bool(sinhala_pattern.search(text))
|
| 76 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
def detect_singlish(text: str) -> bool:
|
| 78 |
"""Detect common Singlish patterns and words"""
|
| 79 |
singlish_words = [
|
|
@@ -92,17 +2148,28 @@ def detect_singlish(text: str) -> bool:
|
|
| 92 |
# Consider it Singlish if it has 2 or more Singlish words
|
| 93 |
return singlish_word_count >= 2
|
| 94 |
|
| 95 |
-
def
|
| 96 |
-
"""
|
| 97 |
try:
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
|
|
|
| 101 |
|
| 102 |
-
#
|
| 103 |
-
|
| 104 |
-
|
| 105 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 106 |
# Common Singlish to Sinhala mappings (simplified)
|
| 107 |
singlish_to_sinhala_map = {
|
| 108 |
'mokadda': 'මොකද්ද',
|
|
@@ -151,10 +2218,11 @@ def transliterate_singlish_to_sinhala(text: str) -> str:
|
|
| 151 |
else:
|
| 152 |
transliterated_words.append(word) # Keep original if no mapping
|
| 153 |
|
|
|
|
| 154 |
return ' '.join(transliterated_words)
|
| 155 |
|
| 156 |
except Exception as e:
|
| 157 |
-
logger.error(f"
|
| 158 |
return text # Return original text if transliteration fails
|
| 159 |
|
| 160 |
def translate_text(text: str, target_language: str = 'en') -> str:
|
|
@@ -168,51 +2236,67 @@ def translate_text(text: str, target_language: str = 'en') -> str:
|
|
| 168 |
|
| 169 |
def process_multilingual_input(user_message: str) -> tuple:
|
| 170 |
"""
|
| 171 |
-
|
| 172 |
-
|
| 173 |
"""
|
| 174 |
-
original_language = 'en'
|
| 175 |
-
needs_translation = False
|
| 176 |
processed_message = user_message
|
| 177 |
transliteration_used = False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 178 |
|
| 179 |
-
#
|
| 180 |
-
if
|
| 181 |
-
|
|
|
|
| 182 |
original_language = 'si'
|
| 183 |
needs_translation = True
|
| 184 |
processed_message = translate_text(user_message, 'en')
|
| 185 |
logger.info(f"Translated from Sinhala: '{user_message}' -> '{processed_message}'")
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
logger.info("
|
| 190 |
original_language = 'singlish'
|
| 191 |
needs_translation = True
|
| 192 |
transliteration_used = True
|
|
|
|
| 193 |
|
| 194 |
try:
|
| 195 |
-
# Step 1:
|
| 196 |
-
sinhala_text =
|
| 197 |
-
logger.info(f"
|
| 198 |
|
| 199 |
# Step 2: Translate Sinhala to English for search
|
| 200 |
processed_message = translate_text(sinhala_text, 'en')
|
| 201 |
-
logger.info(f"Translated
|
| 202 |
|
| 203 |
except Exception as e:
|
| 204 |
-
logger.error(f"Error in
|
| 205 |
# Fallback: try direct translation or keep original
|
| 206 |
try:
|
| 207 |
processed_message = translate_text(user_message, 'en')
|
| 208 |
-
logger.info(f"Fallback translation
|
| 209 |
except:
|
| 210 |
processed_message = user_message
|
| 211 |
needs_translation = False
|
| 212 |
transliteration_used = False
|
| 213 |
-
logger.info("Using original
|
| 214 |
|
| 215 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 216 |
|
| 217 |
def translate_response_if_needed(response: str, original_language: str) -> str:
|
| 218 |
"""Translate response back to original language if needed"""
|
|
@@ -389,8 +2473,8 @@ def generate_response_with_rag(user_message: str, session_id: str) -> Dict[str,
|
|
| 389 |
"""Generate response using RAG with memory and multilingual support"""
|
| 390 |
try:
|
| 391 |
# Process multilingual input
|
| 392 |
-
processed_message, original_language, needs_translation, transliteration_used = process_multilingual_input(user_message)
|
| 393 |
-
logger.info(f"Input processing: original='{user_message}', processed='{processed_message}', lang='{original_language}', transliteration='{transliteration_used}'")
|
| 394 |
|
| 395 |
# Get or create memory for this session
|
| 396 |
memory = get_or_create_memory(session_id)
|
|
@@ -444,9 +2528,6 @@ Guidelines:
|
|
| 444 |
- Maintain conversation continuity
|
| 445 |
- Be culturally sensitive when discussing Sri Lankan policies
|
| 446 |
- When responding in Sinhala, use appropriate formal language for policy discussions
|
| 447 |
-
- DO NOT use asterisks (*) for formatting or emphasis
|
| 448 |
-
- DO NOT use markdown formatting like **bold** or *italic*
|
| 449 |
-
- Use plain text without any special formatting characters
|
| 450 |
|
| 451 |
Please provide a helpful response:"""
|
| 452 |
|
|
@@ -478,7 +2559,9 @@ Please provide a helpful response:"""
|
|
| 478 |
"sources": sources,
|
| 479 |
"language_detected": original_language,
|
| 480 |
"translation_used": needs_translation,
|
| 481 |
-
"transliteration_used": transliteration_used
|
|
|
|
|
|
|
| 482 |
}
|
| 483 |
|
| 484 |
except Exception as e:
|
|
@@ -500,7 +2583,9 @@ Please provide a helpful response:"""
|
|
| 500 |
"sources": [],
|
| 501 |
"language_detected": original_language if 'original_language' in locals() else 'en',
|
| 502 |
"translation_used": False,
|
| 503 |
-
"transliteration_used": False
|
|
|
|
|
|
|
| 504 |
}
|
| 505 |
|
| 506 |
def clear_session_memory(session_id: str) -> bool:
|
|
@@ -542,7 +2627,9 @@ def chat():
|
|
| 542 |
"user_message": user_message,
|
| 543 |
"language_detected": result.get("language_detected", "en"),
|
| 544 |
"translation_used": result.get("translation_used", False),
|
| 545 |
-
"transliteration_used": result.get("transliteration_used", False)
|
|
|
|
|
|
|
| 546 |
})
|
| 547 |
|
| 548 |
except Exception as e:
|
|
@@ -740,7 +2827,7 @@ def detect_language():
|
|
| 740 |
"error": "Text is required"
|
| 741 |
}), 400
|
| 742 |
|
| 743 |
-
processed_message, original_language, needs_translation, transliteration_used = process_multilingual_input(text)
|
| 744 |
|
| 745 |
return jsonify({
|
| 746 |
"original_text": text,
|
|
@@ -748,6 +2835,8 @@ def detect_language():
|
|
| 748 |
"language_detected": original_language,
|
| 749 |
"translation_needed": needs_translation,
|
| 750 |
"transliteration_used": transliteration_used,
|
|
|
|
|
|
|
| 751 |
"contains_sinhala": detect_sinhala_content(text),
|
| 752 |
"is_singlish": detect_singlish(text)
|
| 753 |
})
|
|
|
|
| 33 |
import requests
|
| 34 |
import json
|
| 35 |
|
| 36 |
+
# AI-based language processing imports
|
| 37 |
+
from transformers import pipeline
|
| 38 |
+
import torch
|
| 39 |
+
|
| 40 |
+
app = Flask(__name__)
|
| 41 |
+
CORS(app)
|
| 42 |
+
|
| 43 |
+
# Configure logging
|
| 44 |
+
logging.basicConfig(level=logging.INFO)
|
| 45 |
+
logger = logging.getLogger(__name__)
|
| 46 |
+
|
| 47 |
+
# Configure Gemini
|
| 48 |
+
GEMINI_API_KEY = os.getenv('GEMINI_API_KEY')
|
| 49 |
+
if not GEMINI_API_KEY:
|
| 50 |
+
logger.error("GEMINI_API_KEY not found in environment variables")
|
| 51 |
+
raise ValueError("Please set GEMINI_API_KEY in your .env file")
|
| 52 |
+
|
| 53 |
+
# Configure Pinecone
|
| 54 |
+
PINECONE_API_KEY = os.getenv('PINECONE_API_KEY')
|
| 55 |
+
if not PINECONE_API_KEY:
|
| 56 |
+
logger.error("PINECONE_API_KEY not found in environment variables")
|
| 57 |
+
raise ValueError("Please set PINECONE_API_KEY in your .env file")
|
| 58 |
+
|
| 59 |
+
# Initialize Pinecone and embedding model
|
| 60 |
+
pc = Pinecone(api_key=PINECONE_API_KEY)
|
| 61 |
+
BUDGET_INDEX_NAME = "budget-proposals-index"
|
| 62 |
+
embed_model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
|
| 63 |
+
|
| 64 |
+
# Initialize LangChain components
|
| 65 |
+
llm = ChatGoogleGenerativeAI(
|
| 66 |
+
model="gemini-2.5-flash",
|
| 67 |
+
google_api_key=GEMINI_API_KEY,
|
| 68 |
+
temperature=0.7,
|
| 69 |
+
max_tokens=1000
|
| 70 |
+
)
|
| 71 |
+
|
| 72 |
+
# Initialize translator
|
| 73 |
+
translator = Translator()
|
| 74 |
+
|
| 75 |
+
# Initialize AI-based language detection and transliteration models
|
| 76 |
+
logger.info("Loading AI models...")
|
| 77 |
+
try:
|
| 78 |
+
# Use Google Translate's language detection which supports Sinhala
|
| 79 |
+
# This is more reliable for Sinhala than the HF model
|
| 80 |
+
language_detector = "google_translate" # Use Google Translate for detection
|
| 81 |
+
logger.info("Using Google Translate for language detection (supports Sinhala)")
|
| 82 |
+
except Exception as e:
|
| 83 |
+
logger.error(f"Failed to initialize language detection: {e}")
|
| 84 |
+
language_detector = None
|
| 85 |
+
|
| 86 |
+
try:
|
| 87 |
+
# Sinhala transliteration model
|
| 88 |
+
sinhala_transliterator = pipeline(
|
| 89 |
+
"text2text-generation",
|
| 90 |
+
model="deshanksuman/swabhashambart50SinhalaTransliteration"
|
| 91 |
+
)
|
| 92 |
+
logger.info("Sinhala transliteration model loaded successfully")
|
| 93 |
+
except Exception as e:
|
| 94 |
+
logger.error(f"Failed to load transliteration model: {e}")
|
| 95 |
+
sinhala_transliterator = None
|
| 96 |
+
|
| 97 |
+
def detect_sinhala_content(text: str) -> bool:
|
| 98 |
+
"""Detect if text contains Sinhala characters"""
|
| 99 |
+
# Sinhala Unicode range: U+0D80 to U+0DFF
|
| 100 |
+
sinhala_pattern = re.compile(r'[\u0D80-\u0DFF]')
|
| 101 |
+
return bool(sinhala_pattern.search(text))
|
| 102 |
+
|
| 103 |
+
def ai_detect_language(text: str) -> Dict[str, Any]:
|
| 104 |
+
"""Enhanced language detection using Google Translate (supports Sinhala)"""
|
| 105 |
+
try:
|
| 106 |
+
if language_detector is None:
|
| 107 |
+
# Fallback to rule-based detection
|
| 108 |
+
return rule_based_language_detection(text)
|
| 109 |
+
|
| 110 |
+
# Check for Sinhala Unicode first (most reliable)
|
| 111 |
+
has_sinhala_unicode = detect_sinhala_content(text)
|
| 112 |
+
if has_sinhala_unicode:
|
| 113 |
+
return {
|
| 114 |
+
'language': 'si',
|
| 115 |
+
'confidence': 0.95,
|
| 116 |
+
'is_sinhala_unicode': True,
|
| 117 |
+
'is_romanized_sinhala': False,
|
| 118 |
+
'is_english': False,
|
| 119 |
+
'detection_method': 'unicode_detection'
|
| 120 |
+
}
|
| 121 |
+
|
| 122 |
+
# Use Google Translate for language detection
|
| 123 |
+
try:
|
| 124 |
+
detection_result = translator.detect(text)
|
| 125 |
+
detected_lang = detection_result.lang
|
| 126 |
+
confidence = detection_result.confidence
|
| 127 |
+
|
| 128 |
+
# Check if it's romanized Sinhala based on content analysis
|
| 129 |
+
is_romanized_sinhala = (
|
| 130 |
+
detected_lang in ['en', 'unknown'] and
|
| 131 |
+
detect_singlish(text)
|
| 132 |
+
)
|
| 133 |
+
|
| 134 |
+
# Override detection if Singlish patterns are strong
|
| 135 |
+
if is_romanized_sinhala:
|
| 136 |
+
detected_lang = 'singlish'
|
| 137 |
+
confidence = max(0.7, confidence) # Boost confidence for Singlish
|
| 138 |
+
|
| 139 |
+
return {
|
| 140 |
+
'language': detected_lang,
|
| 141 |
+
'confidence': confidence,
|
| 142 |
+
'is_sinhala_unicode': False,
|
| 143 |
+
'is_romanized_sinhala': is_romanized_sinhala,
|
| 144 |
+
'is_english': detected_lang == 'en' and not is_romanized_sinhala,
|
| 145 |
+
'detection_method': 'google_translate'
|
| 146 |
+
}
|
| 147 |
+
|
| 148 |
+
except Exception as e:
|
| 149 |
+
logger.error(f"Google Translate detection failed: {e}")
|
| 150 |
+
# Fallback to rule-based with Singlish detection
|
| 151 |
+
return enhanced_rule_based_detection(text)
|
| 152 |
+
|
| 153 |
+
except Exception as e:
|
| 154 |
+
logger.error(f"Language detection failed: {e}")
|
| 155 |
+
return rule_based_language_detection(text)
|
| 156 |
+
|
| 157 |
+
def enhanced_rule_based_detection(text: str) -> Dict[str, Any]:
|
| 158 |
+
"""Enhanced rule-based detection with better Singlish recognition"""
|
| 159 |
+
has_sinhala_unicode = detect_sinhala_content(text)
|
| 160 |
+
is_romanized_sinhala = detect_singlish(text) and not has_sinhala_unicode
|
| 161 |
+
|
| 162 |
+
# More sophisticated Singlish detection
|
| 163 |
+
if not has_sinhala_unicode and not is_romanized_sinhala:
|
| 164 |
+
# Check for common Sinhala sentence patterns in English letters
|
| 165 |
+
sinhala_patterns = [
|
| 166 |
+
r'\b(mokadda|kohomada|api|oya|mama)\b',
|
| 167 |
+
r'\b(eka|meka|thiyenne|kiyala)\b',
|
| 168 |
+
r'\b(gana|genna|danna|karanna)\b',
|
| 169 |
+
r'\b(budget|proposal).*\b(gana|eka)\b'
|
| 170 |
+
]
|
| 171 |
+
|
| 172 |
+
text_lower = text.lower()
|
| 173 |
+
pattern_matches = sum(1 for pattern in sinhala_patterns if re.search(pattern, text_lower))
|
| 174 |
+
|
| 175 |
+
if pattern_matches >= 1: # Lower threshold for better detection
|
| 176 |
+
is_romanized_sinhala = True
|
| 177 |
+
|
| 178 |
+
if has_sinhala_unicode:
|
| 179 |
+
language_code = 'si'
|
| 180 |
+
confidence = 0.9
|
| 181 |
+
elif is_romanized_sinhala:
|
| 182 |
+
language_code = 'singlish'
|
| 183 |
+
confidence = 0.8
|
| 184 |
+
else:
|
| 185 |
+
language_code = 'en'
|
| 186 |
+
confidence = 0.7
|
| 187 |
+
|
| 188 |
+
return {
|
| 189 |
+
'language': language_code,
|
| 190 |
+
'confidence': confidence,
|
| 191 |
+
'is_sinhala_unicode': has_sinhala_unicode,
|
| 192 |
+
'is_romanized_sinhala': is_romanized_sinhala,
|
| 193 |
+
'is_english': language_code == 'en',
|
| 194 |
+
'detection_method': 'enhanced_rule_based'
|
| 195 |
+
}
|
| 196 |
+
|
| 197 |
+
def rule_based_language_detection(text: str) -> Dict[str, Any]:
|
| 198 |
+
"""Fallback rule-based language detection"""
|
| 199 |
+
has_sinhala_unicode = detect_sinhala_content(text)
|
| 200 |
+
is_romanized_sinhala = detect_singlish(text) and not has_sinhala_unicode
|
| 201 |
+
is_english = not has_sinhala_unicode and not is_romanized_sinhala
|
| 202 |
+
|
| 203 |
+
if has_sinhala_unicode:
|
| 204 |
+
language_code = 'si'
|
| 205 |
+
elif is_romanized_sinhala:
|
| 206 |
+
language_code = 'singlish'
|
| 207 |
+
else:
|
| 208 |
+
language_code = 'en'
|
| 209 |
+
|
| 210 |
+
return {
|
| 211 |
+
'language': language_code,
|
| 212 |
+
'confidence': 0.8, # Default confidence for rule-based
|
| 213 |
+
'is_sinhala_unicode': has_sinhala_unicode,
|
| 214 |
+
'is_romanized_sinhala': is_romanized_sinhala,
|
| 215 |
+
'is_english': is_english,
|
| 216 |
+
'detection_method': 'rule_based'
|
| 217 |
+
}
|
| 218 |
+
|
| 219 |
+
def detect_singlish(text: str) -> bool:
|
| 220 |
+
"""Detect common Singlish patterns and words"""
|
| 221 |
+
singlish_words = [
|
| 222 |
+
'mokadda', 'kohomada', 'api', 'oya', 'mama', 'eka', 'meka', 'oya', 'dan', 'kiyala',
|
| 223 |
+
'budget', 'proposal', 'karan', 'karanna', 'gana', 'genna', 'danna', 'ahala', 'denna',
|
| 224 |
+
'mata', 'ape', 'wage', 'wenas', 'thiyenne', 'kiyanawa', 'balanawa', 'pennanna',
|
| 225 |
+
'sampura', 'mudal', 'pasal', 'vyaparayak', 'rajaye', 'arthikaya', 'sammandala',
|
| 226 |
+
'kara', 'karanna', 'giya', 'yanawa', 'enawa', 'gihin', 'awe', 'nane', 'inne',
|
| 227 |
+
'danna', 'kiyanna', 'balanna', 'ganna', 'denna', 'yanna', 'enna'
|
| 228 |
+
]
|
| 229 |
+
|
| 230 |
+
# Convert to lowercase and check for common Singlish words
|
| 231 |
+
text_lower = text.lower()
|
| 232 |
+
singlish_word_count = sum(1 for word in singlish_words if word in text_lower)
|
| 233 |
+
|
| 234 |
+
# Consider it Singlish if it has 2 or more Singlish words
|
| 235 |
+
return singlish_word_count >= 2
|
| 236 |
+
|
| 237 |
+
def ai_transliterate_singlish_to_sinhala(text: str) -> str:
|
| 238 |
+
"""AI-based transliteration from Romanized Sinhala to Sinhala script"""
|
| 239 |
+
try:
|
| 240 |
+
if sinhala_transliterator is None:
|
| 241 |
+
# Fallback to rule-based transliteration
|
| 242 |
+
logger.info("AI transliterator not available, using rule-based fallback")
|
| 243 |
+
return rule_based_transliterate_singlish_to_sinhala(text)
|
| 244 |
+
|
| 245 |
+
# Use AI model for transliteration
|
| 246 |
+
result = sinhala_transliterator(text, max_length=256, num_return_sequences=1)
|
| 247 |
+
transliterated_text = result[0]['generated_text']
|
| 248 |
+
|
| 249 |
+
logger.info(f"AI transliteration: '{text}' -> '{transliterated_text}'")
|
| 250 |
+
return transliterated_text
|
| 251 |
+
|
| 252 |
+
except Exception as e:
|
| 253 |
+
logger.error(f"AI transliteration failed: {e}")
|
| 254 |
+
return rule_based_transliterate_singlish_to_sinhala(text)
|
| 255 |
+
|
| 256 |
+
def rule_based_transliterate_singlish_to_sinhala(text: str) -> str:
|
| 257 |
+
"""Fallback rule-based transliteration for Romanized Sinhala"""
|
| 258 |
+
try:
|
| 259 |
+
# Common Singlish to Sinhala mappings (simplified)
|
| 260 |
+
singlish_to_sinhala_map = {
|
| 261 |
+
'mokadda': 'මොකද්ද',
|
| 262 |
+
'kohomada': 'කොහොමද',
|
| 263 |
+
'api': 'අපි',
|
| 264 |
+
'oya': 'ඔයා',
|
| 265 |
+
'mama': 'මම',
|
| 266 |
+
'eka': 'එක',
|
| 267 |
+
'meka': 'මේක',
|
| 268 |
+
'dan': 'දැන්',
|
| 269 |
+
'kiyala': 'කියලා',
|
| 270 |
+
'gana': 'ගැන',
|
| 271 |
+
'genna': 'ගන්න',
|
| 272 |
+
'danna': 'දන්න',
|
| 273 |
+
'dennna': 'දෙන්න',
|
| 274 |
+
'mata': 'මට',
|
| 275 |
+
'ape': 'අපේ',
|
| 276 |
+
'thiyenne': 'තියෙන්නේ',
|
| 277 |
+
'kiyanawa': 'කියනවා',
|
| 278 |
+
'balanawa': 'බලනවා',
|
| 279 |
+
'pennanna': 'පෙන්නන්න',
|
| 280 |
+
'sampura': 'සම්පූර්ණ',
|
| 281 |
+
'mudal': 'මුදල්',
|
| 282 |
+
'pasal': 'පාසල්',
|
| 283 |
+
'rajaye': 'රජයේ',
|
| 284 |
+
'arthikaya': 'ආර්ථිකය',
|
| 285 |
+
'kara': 'කර',
|
| 286 |
+
'karanna': 'කරන්න',
|
| 287 |
+
'giya': 'ගිය',
|
| 288 |
+
'yanawa': 'යනවා',
|
| 289 |
+
'enawa': 'එනවා',
|
| 290 |
+
'inne': 'ඉන්නේ',
|
| 291 |
+
'yanna': 'යන්න',
|
| 292 |
+
'enna': 'එන්න'
|
| 293 |
+
}
|
| 294 |
+
|
| 295 |
+
# Simple word-by-word replacement
|
| 296 |
+
words = text.lower().split()
|
| 297 |
+
transliterated_words = []
|
| 298 |
+
|
| 299 |
+
for word in words:
|
| 300 |
+
# Remove punctuation for mapping
|
| 301 |
+
clean_word = re.sub(r'[^\w]', '', word)
|
| 302 |
+
if clean_word in singlish_to_sinhala_map:
|
| 303 |
+
transliterated_words.append(singlish_to_sinhala_map[clean_word])
|
| 304 |
+
else:
|
| 305 |
+
transliterated_words.append(word) # Keep original if no mapping
|
| 306 |
+
|
| 307 |
+
logger.info(f"Rule-based transliteration: '{text}' -> '{' '.join(transliterated_words)}'")
|
| 308 |
+
return ' '.join(transliterated_words)
|
| 309 |
+
|
| 310 |
+
except Exception as e:
|
| 311 |
+
logger.error(f"Rule-based transliteration error: {e}")
|
| 312 |
+
return text # Return original text if transliteration fails
|
| 313 |
+
|
| 314 |
+
def translate_text(text: str, target_language: str = 'en') -> str:
|
| 315 |
+
"""Translate text using Google Translate"""
|
| 316 |
+
try:
|
| 317 |
+
result = translator.translate(text, dest=target_language)
|
| 318 |
+
return result.text
|
| 319 |
+
except Exception as e:
|
| 320 |
+
logger.error(f"Translation error: {e}")
|
| 321 |
+
return text # Return original text if translation fails
|
| 322 |
+
|
| 323 |
+
def process_multilingual_input(user_message: str) -> tuple:
|
| 324 |
+
"""
|
| 325 |
+
AI-enhanced multilingual input processing:
|
| 326 |
+
AI Language Detection -> AI Transliteration -> Google Translate -> English
|
| 327 |
+
"""
|
| 328 |
+
processed_message = user_message
|
| 329 |
+
transliteration_used = False
|
| 330 |
+
ai_detection_used = False
|
| 331 |
+
|
| 332 |
+
# Step 1: AI-based language detection
|
| 333 |
+
language_info = ai_detect_language(user_message)
|
| 334 |
+
original_language = language_info['language']
|
| 335 |
+
confidence = language_info['confidence']
|
| 336 |
+
detection_method = language_info['detection_method']
|
| 337 |
+
|
| 338 |
+
logger.info(f"Language detection: {original_language} (confidence: {confidence:.2f}, method: {detection_method})")
|
| 339 |
+
|
| 340 |
+
# Determine processing based on detected language
|
| 341 |
+
if language_info['is_sinhala_unicode']:
|
| 342 |
+
# Direct Sinhala Unicode -> English translation
|
| 343 |
+
logger.info("Processing Sinhala Unicode input")
|
| 344 |
+
original_language = 'si'
|
| 345 |
+
needs_translation = True
|
| 346 |
+
processed_message = translate_text(user_message, 'en')
|
| 347 |
+
logger.info(f"Translated from Sinhala: '{user_message}' -> '{processed_message}'")
|
| 348 |
+
|
| 349 |
+
elif language_info['is_romanized_sinhala']:
|
| 350 |
+
# Romanized Sinhala -> AI Transliteration -> Translation
|
| 351 |
+
logger.info("Processing Romanized Sinhala (Singlish) input")
|
| 352 |
+
original_language = 'singlish'
|
| 353 |
+
needs_translation = True
|
| 354 |
+
transliteration_used = True
|
| 355 |
+
ai_detection_used = detection_method == 'ai'
|
| 356 |
+
|
| 357 |
+
try:
|
| 358 |
+
# Step 1: AI-based transliteration
|
| 359 |
+
sinhala_text = ai_transliterate_singlish_to_sinhala(user_message)
|
| 360 |
+
logger.info(f"AI transliterated: '{user_message}' -> '{sinhala_text}'")
|
| 361 |
+
|
| 362 |
+
# Step 2: Translate Sinhala to English for search
|
| 363 |
+
processed_message = translate_text(sinhala_text, 'en')
|
| 364 |
+
logger.info(f"Translated to English: '{sinhala_text}' -> '{processed_message}'")
|
| 365 |
+
|
| 366 |
+
except Exception as e:
|
| 367 |
+
logger.error(f"Error in AI processing pipeline: {e}")
|
| 368 |
+
# Fallback: try direct translation or keep original
|
| 369 |
+
try:
|
| 370 |
+
processed_message = translate_text(user_message, 'en')
|
| 371 |
+
logger.info(f"Fallback translation: '{user_message}' -> '{processed_message}'")
|
| 372 |
+
except:
|
| 373 |
+
processed_message = user_message
|
| 374 |
+
needs_translation = False
|
| 375 |
+
transliteration_used = False
|
| 376 |
+
logger.info("Using original text for search")
|
| 377 |
+
|
| 378 |
+
else:
|
| 379 |
+
# English or other languages
|
| 380 |
+
logger.info("Processing as English input")
|
| 381 |
+
original_language = 'en'
|
| 382 |
+
needs_translation = False
|
| 383 |
+
processed_message = user_message
|
| 384 |
+
|
| 385 |
+
return processed_message, original_language, needs_translation, transliteration_used, ai_detection_used, confidence
|
| 386 |
+
|
| 387 |
+
def translate_response_if_needed(response: str, original_language: str) -> str:
|
| 388 |
+
"""Translate response back to original language if needed"""
|
| 389 |
+
if original_language == 'si':
|
| 390 |
+
# Translate back to Sinhala
|
| 391 |
+
try:
|
| 392 |
+
translated_response = translate_text(response, 'si')
|
| 393 |
+
logger.info(f"Translated response to Sinhala: '{response[:100]}...' -> '{translated_response[:100]}...'")
|
| 394 |
+
return translated_response
|
| 395 |
+
except Exception as e:
|
| 396 |
+
logger.error(f"Error translating response to Sinhala: {e}")
|
| 397 |
+
return response
|
| 398 |
+
elif original_language == 'singlish':
|
| 399 |
+
# For Singlish, we can optionally provide a mixed response
|
| 400 |
+
# For now, keep English response but could enhance later
|
| 401 |
+
return response
|
| 402 |
+
|
| 403 |
+
return response
|
| 404 |
+
|
| 405 |
+
def get_pinecone_index():
|
| 406 |
+
"""Get the budget proposals Pinecone index"""
|
| 407 |
+
try:
|
| 408 |
+
return pc.Index(BUDGET_INDEX_NAME)
|
| 409 |
+
except Exception as e:
|
| 410 |
+
logger.error(f"Error accessing Pinecone index: {e}")
|
| 411 |
+
return None
|
| 412 |
+
|
| 413 |
+
def search_budget_proposals(query: str) -> str:
|
| 414 |
+
"""Search budget proposals using the semantic search API"""
|
| 415 |
+
try:
|
| 416 |
+
import requests
|
| 417 |
+
|
| 418 |
+
# Use the deployed semantic search API
|
| 419 |
+
response = requests.post(
|
| 420 |
+
f"https://danulr05-budget-proposals-search-api.hf.space/api/search",
|
| 421 |
+
json={"query": query, "top_k": 5},
|
| 422 |
+
timeout=10
|
| 423 |
+
)
|
| 424 |
+
|
| 425 |
+
if response.status_code == 200:
|
| 426 |
+
data = response.json()
|
| 427 |
+
results = data.get("results", [])
|
| 428 |
+
|
| 429 |
+
if not results:
|
| 430 |
+
return "No relevant budget proposals found in the database."
|
| 431 |
+
|
| 432 |
+
# Build context from search results
|
| 433 |
+
context_parts = []
|
| 434 |
+
for result in results[:3]: # Limit to top 3 results
|
| 435 |
+
file_path = result.get("file_path", "")
|
| 436 |
+
category = result.get("category", "")
|
| 437 |
+
summary = result.get("summary", "")
|
| 438 |
+
cost = result.get("costLKR", "")
|
| 439 |
+
title = result.get("title", "")
|
| 440 |
+
content = result.get("content", "") # Get the actual content
|
| 441 |
+
|
| 442 |
+
context_parts.append(f"From {file_path} ({category}): {title}")
|
| 443 |
+
if content:
|
| 444 |
+
context_parts.append(f"Content: {content}")
|
| 445 |
+
elif summary:
|
| 446 |
+
context_parts.append(f"Summary: {summary}")
|
| 447 |
+
if cost and cost != "No Costing Available":
|
| 448 |
+
context_parts.append(f"Cost: {cost}")
|
| 449 |
+
|
| 450 |
+
return "\n\n".join(context_parts)
|
| 451 |
+
else:
|
| 452 |
+
return f"Error accessing semantic search API: {response.status_code}"
|
| 453 |
+
|
| 454 |
+
except Exception as e:
|
| 455 |
+
logger.error(f"Error searching budget proposals: {e}")
|
| 456 |
+
return f"Error searching database: {str(e)}"
|
| 457 |
+
|
| 458 |
+
# Create the RAG tool
|
| 459 |
+
search_tool = Tool(
|
| 460 |
+
name="search_budget_proposals",
|
| 461 |
+
description="Search for relevant budget proposals in the vector database. Use this when you need specific information about budget proposals, costs, policies, or implementation details.",
|
| 462 |
+
func=search_budget_proposals
|
| 463 |
+
)
|
| 464 |
+
|
| 465 |
+
# Create the prompt template for the agent
|
| 466 |
+
agent_prompt = ChatPromptTemplate.from_messages([
|
| 467 |
+
("system", """You are a helpful assistant for budget proposals in Sri Lanka. You have access to a vector database containing detailed information about various budget proposals. You can communicate in English, Sinhala, and understand Singlish (Sinhala written in English letters).
|
| 468 |
+
|
| 469 |
+
When a user asks about budget proposals, you should:
|
| 470 |
+
1. Use the search_budget_proposals tool to find relevant information
|
| 471 |
+
2. Provide accurate, detailed responses based on the retrieved information
|
| 472 |
+
3. Always cite the source documents when mentioning specific proposals
|
| 473 |
+
4. Be professional but approachable in any language
|
| 474 |
+
5. If the search doesn't return relevant results, acknowledge this and provide general guidance
|
| 475 |
+
6. Respond in the same language or style as the user's question when possible
|
| 476 |
+
|
| 477 |
+
Guidelines:
|
| 478 |
+
- Always use the search tool for specific questions about budget proposals
|
| 479 |
+
- Include source citations for any mention of proposals, costs, policies, revenue, or implementation
|
| 480 |
+
- Keep responses clear and informative in any language
|
| 481 |
+
- Use a balanced tone - helpful but not overly casual
|
| 482 |
+
- If asked about topics not covered, redirect to relevant topics professionally
|
| 483 |
+
- Be culturally sensitive when discussing Sri Lankan policies and economic matters
|
| 484 |
+
- When responding in Sinhala, use appropriate formal language for policy discussions"""),
|
| 485 |
+
MessagesPlaceholder(variable_name="chat_history"),
|
| 486 |
+
("human", "{input}"),
|
| 487 |
+
MessagesPlaceholder(variable_name="agent_scratchpad")
|
| 488 |
+
])
|
| 489 |
+
|
| 490 |
+
# Store conversation memories for different sessions
|
| 491 |
+
conversation_memories: Dict[str, ConversationBufferWindowMemory] = {}
|
| 492 |
+
|
| 493 |
+
def get_or_create_memory(session_id: str) -> ConversationBufferWindowMemory:
|
| 494 |
+
"""Get or create a memory instance for a session"""
|
| 495 |
+
if session_id not in conversation_memories:
|
| 496 |
+
# Create new memory with window of 10 messages (5 exchanges)
|
| 497 |
+
conversation_memories[session_id] = ConversationBufferWindowMemory(
|
| 498 |
+
k=10, # Remember last 10 messages
|
| 499 |
+
return_messages=True,
|
| 500 |
+
memory_key="chat_history"
|
| 501 |
+
)
|
| 502 |
+
logger.info(f"Created new memory for session: {session_id}")
|
| 503 |
+
|
| 504 |
+
return conversation_memories[session_id]
|
| 505 |
+
|
| 506 |
+
def create_agent(session_id: str) -> AgentExecutor:
|
| 507 |
+
"""Create a LangChain agent with memory and RAG capabilities"""
|
| 508 |
+
memory = get_or_create_memory(session_id)
|
| 509 |
+
|
| 510 |
+
# Create the agent
|
| 511 |
+
agent = create_openai_functions_agent(
|
| 512 |
+
llm=llm,
|
| 513 |
+
tools=[search_tool],
|
| 514 |
+
prompt=agent_prompt
|
| 515 |
+
)
|
| 516 |
+
|
| 517 |
+
# Create agent executor with memory
|
| 518 |
+
agent_executor = AgentExecutor(
|
| 519 |
+
agent=agent,
|
| 520 |
+
tools=[search_tool],
|
| 521 |
+
memory=memory,
|
| 522 |
+
verbose=False,
|
| 523 |
+
handle_parsing_errors=True
|
| 524 |
+
)
|
| 525 |
+
|
| 526 |
+
return agent_executor
|
| 527 |
+
|
| 528 |
+
def get_available_pdfs() -> List[str]:
|
| 529 |
+
"""Dynamically get list of available PDF files from assets directory"""
|
| 530 |
+
try:
|
| 531 |
+
import os
|
| 532 |
+
pdf_dir = "assets/pdfs"
|
| 533 |
+
if os.path.exists(pdf_dir):
|
| 534 |
+
pdf_files = [f for f in os.listdir(pdf_dir) if f.lower().endswith('.pdf')]
|
| 535 |
+
return pdf_files
|
| 536 |
+
else:
|
| 537 |
+
# Fallback to known PDFs if directory doesn't exist
|
| 538 |
+
return ['MLB.pdf', 'Cigs.pdf', 'Elec.pdf', 'Audit_EPF.pdf', 'EPF.pdf', 'Discretion.pdf', '1750164001872.pdf']
|
| 539 |
+
except Exception as e:
|
| 540 |
+
logger.error(f"Error getting available PDFs: {e}")
|
| 541 |
+
# Fallback to known PDFs
|
| 542 |
+
return ['MLB.pdf', 'Cigs.pdf', 'Elec.pdf', 'Audit_EPF.pdf', 'EPF.pdf', 'Discretion.pdf', '1750164001872.pdf']
|
| 543 |
+
|
| 544 |
+
def extract_sources_from_response(response: str) -> List[str]:
|
| 545 |
+
"""Extract source documents mentioned in the response"""
|
| 546 |
+
sources = []
|
| 547 |
+
|
| 548 |
+
# Get dynamically available PDF files
|
| 549 |
+
available_pdfs = get_available_pdfs()
|
| 550 |
+
|
| 551 |
+
# Look for source patterns like "(Source: MLB.pdf)" or "(Sources: MLB.pdf, EPF.pdf)"
|
| 552 |
+
for pdf in available_pdfs:
|
| 553 |
+
if pdf in response:
|
| 554 |
+
sources.append(pdf)
|
| 555 |
+
|
| 556 |
+
return list(set(sources)) # Remove duplicates
|
| 557 |
+
|
| 558 |
+
def generate_response_with_rag(user_message: str, session_id: str) -> Dict[str, Any]:
|
| 559 |
+
"""Generate response using RAG with memory and multilingual support"""
|
| 560 |
+
try:
|
| 561 |
+
# Process multilingual input
|
| 562 |
+
processed_message, original_language, needs_translation, transliteration_used, ai_detection_used, confidence = process_multilingual_input(user_message)
|
| 563 |
+
logger.info(f"Input processing: original='{user_message}', processed='{processed_message}', lang='{original_language}', transliteration='{transliteration_used}', ai_detection='{ai_detection_used}', confidence='{confidence:.2f}'")
|
| 564 |
+
|
| 565 |
+
# Get or create memory for this session
|
| 566 |
+
memory = get_or_create_memory(session_id)
|
| 567 |
+
|
| 568 |
+
# Search for relevant context using processed (English) message
|
| 569 |
+
search_context = search_budget_proposals(processed_message)
|
| 570 |
+
|
| 571 |
+
# Get conversation history for context
|
| 572 |
+
chat_history = memory.chat_memory.messages
|
| 573 |
+
conversation_context = ""
|
| 574 |
+
if chat_history:
|
| 575 |
+
# Get last few messages for context
|
| 576 |
+
recent_messages = chat_history[-6:] # Last 3 exchanges
|
| 577 |
+
conversation_parts = []
|
| 578 |
+
for msg in recent_messages:
|
| 579 |
+
if isinstance(msg, HumanMessage):
|
| 580 |
+
conversation_parts.append(f"User: {msg.content}")
|
| 581 |
+
elif isinstance(msg, AIMessage):
|
| 582 |
+
conversation_parts.append(f"Assistant: {msg.content}")
|
| 583 |
+
conversation_context = "\n".join(conversation_parts)
|
| 584 |
+
|
| 585 |
+
# Create a prompt with conversation history and retrieved context
|
| 586 |
+
language_instruction = ""
|
| 587 |
+
if original_language == 'si':
|
| 588 |
+
language_instruction = "\n\nIMPORTANT: The user asked in Sinhala. Please respond in Sinhala using proper Sinhala script and formal language appropriate for policy discussions."
|
| 589 |
+
elif original_language == 'singlish':
|
| 590 |
+
if transliteration_used:
|
| 591 |
+
language_instruction = "\n\nNote: The user used Romanized Sinhala (transliterated via Swabhasha). Please respond in Sinhala using proper Sinhala script and formal language appropriate for policy discussions."
|
| 592 |
+
else:
|
| 593 |
+
language_instruction = "\n\nNote: The user used Singlish (Sinhala words in English letters). You may respond in English but consider using some familiar Sri Lankan terminology where appropriate."
|
| 594 |
+
|
| 595 |
+
prompt = f"""You are a helpful assistant for budget proposals in Sri Lanka. You can communicate in English, Sinhala, and understand Singlish.
|
| 596 |
+
|
| 597 |
+
Based on the following information from the budget proposals database:
|
| 598 |
+
|
| 599 |
+
{search_context}
|
| 600 |
+
|
| 601 |
+
{conversation_context}
|
| 602 |
+
|
| 603 |
+
Current user question: {processed_message}
|
| 604 |
+
Original user input: {user_message}
|
| 605 |
+
{language_instruction}
|
| 606 |
+
|
| 607 |
+
Guidelines:
|
| 608 |
+
- Be professional but approachable in any language
|
| 609 |
+
- Include specific details from the retrieved information
|
| 610 |
+
- Cite the source documents when mentioning specific proposals
|
| 611 |
+
- If the search doesn't return relevant results, acknowledge this and provide general guidance
|
| 612 |
+
- Keep responses clear and informative
|
| 613 |
+
- Reference previous conversation context when relevant
|
| 614 |
+
- Maintain conversation continuity
|
| 615 |
+
- Be culturally sensitive when discussing Sri Lankan policies
|
| 616 |
+
- When responding in Sinhala, use appropriate formal language for policy discussions
|
| 617 |
+
|
| 618 |
+
Please provide a helpful response:"""
|
| 619 |
+
|
| 620 |
+
# Generate response using the LLM directly
|
| 621 |
+
response = llm.invoke(prompt)
|
| 622 |
+
response_text = response.content.strip()
|
| 623 |
+
|
| 624 |
+
# Translate response back if needed
|
| 625 |
+
if needs_translation and (original_language == 'si' or (original_language == 'singlish' and transliteration_used)):
|
| 626 |
+
response_text = translate_response_if_needed(response_text, original_language)
|
| 627 |
+
|
| 628 |
+
# Extract sources from response
|
| 629 |
+
sources = extract_sources_from_response(response_text)
|
| 630 |
+
|
| 631 |
+
# Add messages to memory (store original user message for context)
|
| 632 |
+
memory.chat_memory.add_user_message(user_message)
|
| 633 |
+
memory.chat_memory.add_ai_message(response_text)
|
| 634 |
+
|
| 635 |
+
# Get updated conversation history for context
|
| 636 |
+
chat_history = memory.chat_memory.messages
|
| 637 |
+
|
| 638 |
+
return {
|
| 639 |
+
"response": response_text,
|
| 640 |
+
"confidence": "high",
|
| 641 |
+
"session_id": session_id,
|
| 642 |
+
"conversation_length": len(chat_history),
|
| 643 |
+
"memory_used": True,
|
| 644 |
+
"rag_used": True,
|
| 645 |
+
"sources": sources,
|
| 646 |
+
"language_detected": original_language,
|
| 647 |
+
"translation_used": needs_translation,
|
| 648 |
+
"transliteration_used": transliteration_used,
|
| 649 |
+
"ai_detection_used": ai_detection_used,
|
| 650 |
+
"detection_confidence": confidence
|
| 651 |
+
}
|
| 652 |
+
|
| 653 |
+
except Exception as e:
|
| 654 |
+
logger.error(f"Error generating response with RAG: {e}")
|
| 655 |
+
# Provide error message in appropriate language
|
| 656 |
+
error_message = "I'm sorry, I'm having trouble processing your request right now. Please try again later."
|
| 657 |
+
if original_language == 'si':
|
| 658 |
+
try:
|
| 659 |
+
error_message = translate_text(error_message, 'si')
|
| 660 |
+
except:
|
| 661 |
+
pass # Keep English if translation fails
|
| 662 |
+
|
| 663 |
+
return {
|
| 664 |
+
"response": error_message,
|
| 665 |
+
"confidence": "error",
|
| 666 |
+
"session_id": session_id,
|
| 667 |
+
"memory_used": False,
|
| 668 |
+
"rag_used": False,
|
| 669 |
+
"sources": [],
|
| 670 |
+
"language_detected": original_language if 'original_language' in locals() else 'en',
|
| 671 |
+
"translation_used": False,
|
| 672 |
+
"transliteration_used": False,
|
| 673 |
+
"ai_detection_used": False,
|
| 674 |
+
"detection_confidence": 0.0
|
| 675 |
+
}
|
| 676 |
+
|
| 677 |
+
def clear_session_memory(session_id: str) -> bool:
|
| 678 |
+
"""Clear memory for a specific session"""
|
| 679 |
+
try:
|
| 680 |
+
if session_id in conversation_memories:
|
| 681 |
+
del conversation_memories[session_id]
|
| 682 |
+
logger.info(f"Cleared memory for session: {session_id}")
|
| 683 |
+
return True
|
| 684 |
+
return False
|
| 685 |
+
except Exception as e:
|
| 686 |
+
logger.error(f"Error clearing memory: {e}")
|
| 687 |
+
return False
|
| 688 |
+
|
| 689 |
+
@app.route('/api/chat', methods=['POST'])
|
| 690 |
+
def chat():
|
| 691 |
+
"""Enhanced chat endpoint with memory"""
|
| 692 |
+
try:
|
| 693 |
+
data = request.get_json()
|
| 694 |
+
user_message = data.get('message', '').strip()
|
| 695 |
+
session_id = data.get('session_id', 'default')
|
| 696 |
+
|
| 697 |
+
if not user_message:
|
| 698 |
+
return jsonify({
|
| 699 |
+
"error": "Message is required"
|
| 700 |
+
}), 400
|
| 701 |
+
|
| 702 |
+
# Generate response with memory
|
| 703 |
+
result = generate_response_with_rag(user_message, session_id)
|
| 704 |
+
|
| 705 |
+
return jsonify({
|
| 706 |
+
"response": result["response"],
|
| 707 |
+
"confidence": result["confidence"],
|
| 708 |
+
"session_id": session_id,
|
| 709 |
+
"conversation_length": result.get("conversation_length", 0),
|
| 710 |
+
"memory_used": result.get("memory_used", False),
|
| 711 |
+
"rag_used": result.get("rag_used", False),
|
| 712 |
+
"sources": result.get("sources", []),
|
| 713 |
+
"user_message": user_message,
|
| 714 |
+
"language_detected": result.get("language_detected", "en"),
|
| 715 |
+
"translation_used": result.get("translation_used", False),
|
| 716 |
+
"transliteration_used": result.get("transliteration_used", False),
|
| 717 |
+
"ai_detection_used": result.get("ai_detection_used", False),
|
| 718 |
+
"detection_confidence": result.get("detection_confidence", 0.0)
|
| 719 |
+
})
|
| 720 |
+
|
| 721 |
+
except Exception as e:
|
| 722 |
+
logger.error(f"Chat API error: {e}")
|
| 723 |
+
return jsonify({"error": str(e)}), 500
|
| 724 |
+
|
| 725 |
+
@app.route('/api/chat/clear', methods=['POST'])
|
| 726 |
+
def clear_chat():
|
| 727 |
+
"""Clear chat memory for a session"""
|
| 728 |
+
try:
|
| 729 |
+
data = request.get_json()
|
| 730 |
+
session_id = data.get('session_id', 'default')
|
| 731 |
+
|
| 732 |
+
success = clear_session_memory(session_id)
|
| 733 |
+
|
| 734 |
+
return jsonify({
|
| 735 |
+
"success": success,
|
| 736 |
+
"session_id": session_id,
|
| 737 |
+
"message": "Chat memory cleared successfully" if success else "Session not found"
|
| 738 |
+
})
|
| 739 |
+
|
| 740 |
+
except Exception as e:
|
| 741 |
+
logger.error(f"Clear chat error: {e}")
|
| 742 |
+
return jsonify({"error": str(e)}), 500
|
| 743 |
+
|
| 744 |
+
@app.route('/api/chat/sessions', methods=['GET'])
|
| 745 |
+
def list_sessions():
|
| 746 |
+
"""List all active chat sessions"""
|
| 747 |
+
try:
|
| 748 |
+
sessions = []
|
| 749 |
+
for session_id, memory in conversation_memories.items():
|
| 750 |
+
messages = memory.chat_memory.messages
|
| 751 |
+
sessions.append({
|
| 752 |
+
"session_id": session_id,
|
| 753 |
+
"message_count": len(messages),
|
| 754 |
+
"last_activity": datetime.now().isoformat() # Simplified for now
|
| 755 |
+
})
|
| 756 |
+
|
| 757 |
+
return jsonify({
|
| 758 |
+
"sessions": sessions,
|
| 759 |
+
"total_sessions": len(sessions)
|
| 760 |
+
})
|
| 761 |
+
|
| 762 |
+
except Exception as e:
|
| 763 |
+
logger.error(f"List sessions error: {e}")
|
| 764 |
+
return jsonify({"error": str(e)}), 500
|
| 765 |
+
|
| 766 |
+
@app.route('/api/chat/history/<session_id>', methods=['GET'])
|
| 767 |
+
def get_chat_history(session_id: str):
|
| 768 |
+
"""Get chat history for a specific session"""
|
| 769 |
+
try:
|
| 770 |
+
if session_id not in conversation_memories:
|
| 771 |
+
return jsonify({
|
| 772 |
+
"session_id": session_id,
|
| 773 |
+
"history": [],
|
| 774 |
+
"message_count": 0
|
| 775 |
+
})
|
| 776 |
+
|
| 777 |
+
memory = conversation_memories[session_id]
|
| 778 |
+
messages = memory.chat_memory.messages
|
| 779 |
+
|
| 780 |
+
history = []
|
| 781 |
+
for msg in messages:
|
| 782 |
+
if isinstance(msg, HumanMessage):
|
| 783 |
+
history.append({
|
| 784 |
+
"type": "human",
|
| 785 |
+
"content": msg.content,
|
| 786 |
+
"timestamp": datetime.now().isoformat()
|
| 787 |
+
})
|
| 788 |
+
elif isinstance(msg, AIMessage):
|
| 789 |
+
history.append({
|
| 790 |
+
"type": "ai",
|
| 791 |
+
"content": msg.content,
|
| 792 |
+
"timestamp": datetime.now().isoformat()
|
| 793 |
+
})
|
| 794 |
+
|
| 795 |
+
return jsonify({
|
| 796 |
+
"session_id": session_id,
|
| 797 |
+
"history": history,
|
| 798 |
+
"message_count": len(history)
|
| 799 |
+
})
|
| 800 |
+
|
| 801 |
+
except Exception as e:
|
| 802 |
+
logger.error(f"Get chat history error: {e}")
|
| 803 |
+
return jsonify({"error": str(e)}), 500
|
| 804 |
+
|
| 805 |
+
@app.route('/api/chat/health', methods=['GET'])
|
| 806 |
+
def chat_health():
|
| 807 |
+
"""Health check for the enhanced chatbot"""
|
| 808 |
+
try:
|
| 809 |
+
# Test LangChain connection and vector database
|
| 810 |
+
test_agent = create_agent("health_check")
|
| 811 |
+
test_response = test_agent.invoke({"input": "Hello"})
|
| 812 |
+
|
| 813 |
+
# Test vector database connection
|
| 814 |
+
pc_index = get_pinecone_index()
|
| 815 |
+
vector_db_status = "connected" if pc_index else "disconnected"
|
| 816 |
+
|
| 817 |
+
return jsonify({
|
| 818 |
+
"status": "healthy",
|
| 819 |
+
"message": "Enhanced budget proposals chatbot with RAG is running",
|
| 820 |
+
"langchain_status": "connected" if test_response else "disconnected",
|
| 821 |
+
"vector_db_status": vector_db_status,
|
| 822 |
+
"rag_enabled": True,
|
| 823 |
+
"active_sessions": len(conversation_memories),
|
| 824 |
+
"memory_enabled": True
|
| 825 |
+
})
|
| 826 |
+
except Exception as e:
|
| 827 |
+
return jsonify({
|
| 828 |
+
"status": "unhealthy",
|
| 829 |
+
"message": f"Error: {str(e)}"
|
| 830 |
+
}), 500
|
| 831 |
+
|
| 832 |
+
@app.route('/api/chat/debug/<session_id>', methods=['GET'])
|
| 833 |
+
def debug_session(session_id: str):
|
| 834 |
+
"""Debug endpoint to check session memory"""
|
| 835 |
+
try:
|
| 836 |
+
memory_exists = session_id in conversation_memories
|
| 837 |
+
memory_info = {
|
| 838 |
+
"session_id": session_id,
|
| 839 |
+
"memory_exists": memory_exists,
|
| 840 |
+
"total_sessions": len(conversation_memories),
|
| 841 |
+
"session_keys": list(conversation_memories.keys())
|
| 842 |
+
}
|
| 843 |
+
|
| 844 |
+
if memory_exists:
|
| 845 |
+
memory = conversation_memories[session_id]
|
| 846 |
+
messages = memory.chat_memory.messages
|
| 847 |
+
memory_info.update({
|
| 848 |
+
"message_count": len(messages),
|
| 849 |
+
"messages": [
|
| 850 |
+
{
|
| 851 |
+
"type": getattr(msg, 'type', 'unknown'),
|
| 852 |
+
"content": getattr(msg, 'content', '')[:100] + "..." if len(getattr(msg, 'content', '')) > 100 else getattr(msg, 'content', '')
|
| 853 |
+
}
|
| 854 |
+
for msg in messages
|
| 855 |
+
]
|
| 856 |
+
})
|
| 857 |
+
|
| 858 |
+
return jsonify(memory_info)
|
| 859 |
+
|
| 860 |
+
except Exception as e:
|
| 861 |
+
logger.error(f"Debug session error: {e}")
|
| 862 |
+
return jsonify({"error": str(e)}), 500
|
| 863 |
+
|
| 864 |
+
@app.route('/api/chat/suggestions', methods=['GET'])
|
| 865 |
+
def get_chat_suggestions():
|
| 866 |
+
"""Get suggested questions for the chatbot with multilingual support"""
|
| 867 |
+
suggestions = [
|
| 868 |
+
"What are the maternity leave benefits proposed? 🤱",
|
| 869 |
+
"How do the cigarette tax proposals work? 💰",
|
| 870 |
+
"What changes are proposed for electricity tariffs? ⚡",
|
| 871 |
+
"Tell me about the EPF audit proposals 📊",
|
| 872 |
+
"What tax reforms are being suggested? 🏛️",
|
| 873 |
+
"How will these proposals affect the economy? 📈",
|
| 874 |
+
"What is the cost of implementing these proposals? 💵",
|
| 875 |
+
"Can you compare the costs of different proposals? ⚖️",
|
| 876 |
+
"What are the main benefits of these proposals? ✨",
|
| 877 |
+
"Budget proposals gana kiyanna 📋",
|
| 878 |
+
"EPF eka gana mokadda thiyenne? 💰",
|
| 879 |
+
"Electricity bill eka wenas wenawada? ⚡",
|
| 880 |
+
"Maternity leave benefits kiyannako 🤱",
|
| 881 |
+
"මේ budget proposals වල cost එක කීයද? 💵",
|
| 882 |
+
"රජයේ ආර්థික ප්රතිපත්ති ගැන කියන්න 🏛️"
|
| 883 |
+
]
|
| 884 |
+
|
| 885 |
+
return jsonify({
|
| 886 |
+
"suggestions": suggestions,
|
| 887 |
+
"supported_languages": ["English", "Sinhala", "Singlish"]
|
| 888 |
+
})
|
| 889 |
+
|
| 890 |
+
@app.route('/api/chat/available-pdfs', methods=['GET'])
|
| 891 |
+
def get_available_pdfs_endpoint():
|
| 892 |
+
"""Get list of available PDF files for debugging"""
|
| 893 |
+
try:
|
| 894 |
+
available_pdfs = get_available_pdfs()
|
| 895 |
+
return jsonify({
|
| 896 |
+
"available_pdfs": available_pdfs,
|
| 897 |
+
"count": len(available_pdfs),
|
| 898 |
+
"pdf_directory": "assets/pdfs"
|
| 899 |
+
})
|
| 900 |
+
except Exception as e:
|
| 901 |
+
logger.error(f"Error getting available PDFs: {e}")
|
| 902 |
+
return jsonify({"error": str(e)}), 500
|
| 903 |
+
|
| 904 |
+
@app.route('/api/chat/detect-language', methods=['POST'])
|
| 905 |
+
def detect_language():
|
| 906 |
+
"""Test language detection functionality"""
|
| 907 |
+
try:
|
| 908 |
+
data = request.get_json()
|
| 909 |
+
text = data.get('text', '').strip()
|
| 910 |
+
|
| 911 |
+
if not text:
|
| 912 |
+
return jsonify({
|
| 913 |
+
"error": "Text is required"
|
| 914 |
+
}), 400
|
| 915 |
+
|
| 916 |
+
processed_message, original_language, needs_translation, transliteration_used, ai_detection_used, confidence = process_multilingual_input(text)
|
| 917 |
+
|
| 918 |
+
return jsonify({
|
| 919 |
+
"original_text": text,
|
| 920 |
+
"processed_text": processed_message,
|
| 921 |
+
"language_detected": original_language,
|
| 922 |
+
"translation_needed": needs_translation,
|
| 923 |
+
"transliteration_used": transliteration_used,
|
| 924 |
+
"ai_detection_used": ai_detection_used,
|
| 925 |
+
"detection_confidence": confidence,
|
| 926 |
+
"contains_sinhala": detect_sinhala_content(text),
|
| 927 |
+
"is_singlish": detect_singlish(text)
|
| 928 |
+
})
|
| 929 |
+
|
| 930 |
+
except Exception as e:
|
| 931 |
+
logger.error(f"Language detection error: {e}")
|
| 932 |
+
return jsonify({"error": str(e)}), 500
|
| 933 |
+
|
| 934 |
+
@app.route('/', methods=['GET'])
|
| 935 |
+
def home():
|
| 936 |
+
"""Home endpoint with API documentation"""
|
| 937 |
+
return jsonify({
|
| 938 |
+
"message": "Multilingual Budget Proposals Chatbot API with Swabhasha Pipeline",
|
| 939 |
+
"version": "2.1.0",
|
| 940 |
+
"supported_languages": ["English", "Sinhala", "Romanized Sinhala (Singlish)"],
|
| 941 |
+
"features": ["RAG", "Memory", "Swabhasha Transliteration", "Google Translation", "FAISS Vector Store"],
|
| 942 |
+
"pipeline": "Romanized Sinhala → Swabhasha → Sinhala Script → Google Translate → English → LLM → Response",
|
| 943 |
+
"endpoints": {
|
| 944 |
+
"POST /api/chat": "Chat with memory, RAG, and multilingual support",
|
| 945 |
+
"POST /api/chat/clear": "Clear chat memory",
|
| 946 |
+
"GET /api/chat/sessions": "List active sessions",
|
| 947 |
+
"GET /api/chat/history/<session_id>": "Get chat history",
|
| 948 |
+
"GET /api/chat/health": "Health check",
|
| 949 |
+
"GET /api/chat/suggestions": "Get suggested questions (multilingual)",
|
| 950 |
+
"GET /api/chat/available-pdfs": "Get available PDF files",
|
| 951 |
+
"POST /api/chat/detect-language": "Test language detection"
|
| 952 |
+
},
|
| 953 |
+
"status": "running"
|
| 954 |
+
})
|
| 955 |
+
|
| 956 |
+
if __name__ == '__main__':
|
| 957 |
+
app.run(debug=False, host='0.0.0.0', port=7860)
|
| 958 |
+
#!/usr/bin/env python3
|
| 959 |
+
"""
|
| 960 |
+
Enhanced Budget Proposals Chatbot API using LangChain with Memory and Agentic RAG
|
| 961 |
+
"""
|
| 962 |
+
|
| 963 |
+
from flask import Flask, request, jsonify
|
| 964 |
+
from flask_cors import CORS
|
| 965 |
+
import os
|
| 966 |
+
import logging
|
| 967 |
+
import json
|
| 968 |
+
from datetime import datetime
|
| 969 |
+
from typing import Dict, List, Any
|
| 970 |
+
|
| 971 |
+
# LangChain imports
|
| 972 |
+
from langchain_google_genai import ChatGoogleGenerativeAI
|
| 973 |
+
from langchain.memory import ConversationBufferWindowMemory
|
| 974 |
+
from langchain.schema import HumanMessage, AIMessage
|
| 975 |
+
from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder
|
| 976 |
+
from langchain.chains import LLMChain
|
| 977 |
+
from langchain_community.chat_message_histories import RedisChatMessageHistory
|
| 978 |
+
from langchain.tools import Tool
|
| 979 |
+
from langchain.agents import AgentExecutor, create_openai_functions_agent
|
| 980 |
+
from langchain.agents.openai_functions_agent.base import OpenAIFunctionsAgent
|
| 981 |
+
from langchain.schema import BaseMessage
|
| 982 |
+
|
| 983 |
+
# Vector database imports
|
| 984 |
+
from pinecone import Pinecone
|
| 985 |
+
from sentence_transformers import SentenceTransformer
|
| 986 |
+
|
| 987 |
+
# Language detection and translation imports
|
| 988 |
+
from googletrans import Translator
|
| 989 |
+
import re
|
| 990 |
+
import requests
|
| 991 |
+
import json
|
| 992 |
+
|
| 993 |
+
# AI-based language processing imports
|
| 994 |
+
from transformers import pipeline
|
| 995 |
+
import torch
|
| 996 |
+
|
| 997 |
+
app = Flask(__name__)
|
| 998 |
+
CORS(app)
|
| 999 |
+
|
| 1000 |
+
# Configure logging
|
| 1001 |
+
logging.basicConfig(level=logging.INFO)
|
| 1002 |
+
logger = logging.getLogger(__name__)
|
| 1003 |
+
|
| 1004 |
+
# Configure Gemini
|
| 1005 |
+
GEMINI_API_KEY = os.getenv('GEMINI_API_KEY')
|
| 1006 |
+
if not GEMINI_API_KEY:
|
| 1007 |
+
logger.error("GEMINI_API_KEY not found in environment variables")
|
| 1008 |
+
raise ValueError("Please set GEMINI_API_KEY in your .env file")
|
| 1009 |
+
|
| 1010 |
+
# Configure Pinecone
|
| 1011 |
+
PINECONE_API_KEY = os.getenv('PINECONE_API_KEY')
|
| 1012 |
+
if not PINECONE_API_KEY:
|
| 1013 |
+
logger.error("PINECONE_API_KEY not found in environment variables")
|
| 1014 |
+
raise ValueError("Please set PINECONE_API_KEY in your .env file")
|
| 1015 |
+
|
| 1016 |
+
# Initialize Pinecone and embedding model
|
| 1017 |
+
pc = Pinecone(api_key=PINECONE_API_KEY)
|
| 1018 |
+
BUDGET_INDEX_NAME = "budget-proposals-index"
|
| 1019 |
+
embed_model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
|
| 1020 |
+
|
| 1021 |
+
# Initialize LangChain components
|
| 1022 |
+
llm = ChatGoogleGenerativeAI(
|
| 1023 |
+
model="gemini-2.5-flash",
|
| 1024 |
+
google_api_key=GEMINI_API_KEY,
|
| 1025 |
+
temperature=0.7,
|
| 1026 |
+
max_tokens=1000
|
| 1027 |
+
)
|
| 1028 |
+
|
| 1029 |
+
# Initialize translator
|
| 1030 |
+
translator = Translator()
|
| 1031 |
+
|
| 1032 |
+
# Initialize AI-based language detection and transliteration models
|
| 1033 |
+
logger.info("Loading AI models...")
|
| 1034 |
+
try:
|
| 1035 |
+
# Use Google Translate's language detection which supports Sinhala
|
| 1036 |
+
# This is more reliable for Sinhala than the HF model
|
| 1037 |
+
language_detector = "google_translate" # Use Google Translate for detection
|
| 1038 |
+
logger.info("Using Google Translate for language detection (supports Sinhala)")
|
| 1039 |
+
except Exception as e:
|
| 1040 |
+
logger.error(f"Failed to initialize language detection: {e}")
|
| 1041 |
+
language_detector = None
|
| 1042 |
+
|
| 1043 |
+
try:
|
| 1044 |
+
# Sinhala transliteration model
|
| 1045 |
+
sinhala_transliterator = pipeline(
|
| 1046 |
+
"text2text-generation",
|
| 1047 |
+
model="deshanksuman/swabhashambart50SinhalaTransliteration"
|
| 1048 |
+
)
|
| 1049 |
+
logger.info("Sinhala transliteration model loaded successfully")
|
| 1050 |
+
except Exception as e:
|
| 1051 |
+
logger.error(f"Failed to load transliteration model: {e}")
|
| 1052 |
+
sinhala_transliterator = None
|
| 1053 |
+
|
| 1054 |
+
def detect_sinhala_content(text: str) -> bool:
|
| 1055 |
+
"""Detect if text contains Sinhala characters"""
|
| 1056 |
+
# Sinhala Unicode range: U+0D80 to U+0DFF
|
| 1057 |
+
sinhala_pattern = re.compile(r'[\u0D80-\u0DFF]')
|
| 1058 |
+
return bool(sinhala_pattern.search(text))
|
| 1059 |
+
|
| 1060 |
+
def ai_detect_language(text: str) -> Dict[str, Any]:
|
| 1061 |
+
"""Enhanced language detection using Google Translate (supports Sinhala)"""
|
| 1062 |
+
try:
|
| 1063 |
+
if language_detector is None:
|
| 1064 |
+
# Fallback to rule-based detection
|
| 1065 |
+
return rule_based_language_detection(text)
|
| 1066 |
+
|
| 1067 |
+
# Check for Sinhala Unicode first (most reliable)
|
| 1068 |
+
has_sinhala_unicode = detect_sinhala_content(text)
|
| 1069 |
+
if has_sinhala_unicode:
|
| 1070 |
+
return {
|
| 1071 |
+
'language': 'si',
|
| 1072 |
+
'confidence': 0.95,
|
| 1073 |
+
'is_sinhala_unicode': True,
|
| 1074 |
+
'is_romanized_sinhala': False,
|
| 1075 |
+
'is_english': False,
|
| 1076 |
+
'detection_method': 'unicode_detection'
|
| 1077 |
+
}
|
| 1078 |
+
|
| 1079 |
+
# Use Google Translate for language detection
|
| 1080 |
+
try:
|
| 1081 |
+
detection_result = translator.detect(text)
|
| 1082 |
+
detected_lang = detection_result.lang
|
| 1083 |
+
confidence = detection_result.confidence
|
| 1084 |
+
|
| 1085 |
+
# Check if it's romanized Sinhala based on content analysis
|
| 1086 |
+
is_romanized_sinhala = (
|
| 1087 |
+
detected_lang in ['en', 'unknown'] and
|
| 1088 |
+
detect_singlish(text)
|
| 1089 |
+
)
|
| 1090 |
+
|
| 1091 |
+
# Override detection if Singlish patterns are strong
|
| 1092 |
+
if is_romanized_sinhala:
|
| 1093 |
+
detected_lang = 'singlish'
|
| 1094 |
+
confidence = max(0.7, confidence) # Boost confidence for Singlish
|
| 1095 |
+
|
| 1096 |
+
return {
|
| 1097 |
+
'language': detected_lang,
|
| 1098 |
+
'confidence': confidence,
|
| 1099 |
+
'is_sinhala_unicode': False,
|
| 1100 |
+
'is_romanized_sinhala': is_romanized_sinhala,
|
| 1101 |
+
'is_english': detected_lang == 'en' and not is_romanized_sinhala,
|
| 1102 |
+
'detection_method': 'google_translate'
|
| 1103 |
+
}
|
| 1104 |
+
|
| 1105 |
+
except Exception as e:
|
| 1106 |
+
logger.error(f"Google Translate detection failed: {e}")
|
| 1107 |
+
# Fallback to rule-based with Singlish detection
|
| 1108 |
+
return enhanced_rule_based_detection(text)
|
| 1109 |
+
|
| 1110 |
+
except Exception as e:
|
| 1111 |
+
logger.error(f"Language detection failed: {e}")
|
| 1112 |
+
return rule_based_language_detection(text)
|
| 1113 |
+
|
| 1114 |
+
def enhanced_rule_based_detection(text: str) -> Dict[str, Any]:
|
| 1115 |
+
"""Enhanced rule-based detection with better Singlish recognition"""
|
| 1116 |
+
has_sinhala_unicode = detect_sinhala_content(text)
|
| 1117 |
+
is_romanized_sinhala = detect_singlish(text) and not has_sinhala_unicode
|
| 1118 |
+
|
| 1119 |
+
# More sophisticated Singlish detection
|
| 1120 |
+
if not has_sinhala_unicode and not is_romanized_sinhala:
|
| 1121 |
+
# Check for common Sinhala sentence patterns in English letters
|
| 1122 |
+
sinhala_patterns = [
|
| 1123 |
+
r'\b(mokadda|kohomada|api|oya|mama)\b',
|
| 1124 |
+
r'\b(eka|meka|thiyenne|kiyala)\b',
|
| 1125 |
+
r'\b(gana|genna|danna|karanna)\b',
|
| 1126 |
+
r'\b(budget|proposal).*\b(gana|eka)\b'
|
| 1127 |
+
]
|
| 1128 |
+
|
| 1129 |
+
text_lower = text.lower()
|
| 1130 |
+
pattern_matches = sum(1 for pattern in sinhala_patterns if re.search(pattern, text_lower))
|
| 1131 |
+
|
| 1132 |
+
if pattern_matches >= 1: # Lower threshold for better detection
|
| 1133 |
+
is_romanized_sinhala = True
|
| 1134 |
+
|
| 1135 |
+
if has_sinhala_unicode:
|
| 1136 |
+
language_code = 'si'
|
| 1137 |
+
confidence = 0.9
|
| 1138 |
+
elif is_romanized_sinhala:
|
| 1139 |
+
language_code = 'singlish'
|
| 1140 |
+
confidence = 0.8
|
| 1141 |
+
else:
|
| 1142 |
+
language_code = 'en'
|
| 1143 |
+
confidence = 0.7
|
| 1144 |
+
|
| 1145 |
+
return {
|
| 1146 |
+
'language': language_code,
|
| 1147 |
+
'confidence': confidence,
|
| 1148 |
+
'is_sinhala_unicode': has_sinhala_unicode,
|
| 1149 |
+
'is_romanized_sinhala': is_romanized_sinhala,
|
| 1150 |
+
'is_english': language_code == 'en',
|
| 1151 |
+
'detection_method': 'enhanced_rule_based'
|
| 1152 |
+
}
|
| 1153 |
+
|
| 1154 |
+
def rule_based_language_detection(text: str) -> Dict[str, Any]:
|
| 1155 |
+
"""Fallback rule-based language detection"""
|
| 1156 |
+
has_sinhala_unicode = detect_sinhala_content(text)
|
| 1157 |
+
is_romanized_sinhala = detect_singlish(text) and not has_sinhala_unicode
|
| 1158 |
+
is_english = not has_sinhala_unicode and not is_romanized_sinhala
|
| 1159 |
+
|
| 1160 |
+
if has_sinhala_unicode:
|
| 1161 |
+
language_code = 'si'
|
| 1162 |
+
elif is_romanized_sinhala:
|
| 1163 |
+
language_code = 'singlish'
|
| 1164 |
+
else:
|
| 1165 |
+
language_code = 'en'
|
| 1166 |
+
|
| 1167 |
+
return {
|
| 1168 |
+
'language': language_code,
|
| 1169 |
+
'confidence': 0.8, # Default confidence for rule-based
|
| 1170 |
+
'is_sinhala_unicode': has_sinhala_unicode,
|
| 1171 |
+
'is_romanized_sinhala': is_romanized_sinhala,
|
| 1172 |
+
'is_english': is_english,
|
| 1173 |
+
'detection_method': 'rule_based'
|
| 1174 |
+
}
|
| 1175 |
+
|
| 1176 |
+
def detect_singlish(text: str) -> bool:
|
| 1177 |
+
"""Detect common Singlish patterns and words"""
|
| 1178 |
+
singlish_words = [
|
| 1179 |
+
'mokadda', 'kohomada', 'api', 'oya', 'mama', 'eka', 'meka', 'oya', 'dan', 'kiyala',
|
| 1180 |
+
'budget', 'proposal', 'karan', 'karanna', 'gana', 'genna', 'danna', 'ahala', 'denna',
|
| 1181 |
+
'mata', 'ape', 'wage', 'wenas', 'thiyenne', 'kiyanawa', 'balanawa', 'pennanna',
|
| 1182 |
+
'sampura', 'mudal', 'pasal', 'vyaparayak', 'rajaye', 'arthikaya', 'sammandala',
|
| 1183 |
+
'kara', 'karanna', 'giya', 'yanawa', 'enawa', 'gihin', 'awe', 'nane', 'inne',
|
| 1184 |
+
'danna', 'kiyanna', 'balanna', 'ganna', 'denna', 'yanna', 'enna'
|
| 1185 |
+
]
|
| 1186 |
+
|
| 1187 |
+
# Convert to lowercase and check for common Singlish words
|
| 1188 |
+
text_lower = text.lower()
|
| 1189 |
+
singlish_word_count = sum(1 for word in singlish_words if word in text_lower)
|
| 1190 |
+
|
| 1191 |
+
# Consider it Singlish if it has 2 or more Singlish words
|
| 1192 |
+
return singlish_word_count >= 2
|
| 1193 |
+
|
| 1194 |
+
def ai_transliterate_singlish_to_sinhala(text: str) -> str:
|
| 1195 |
+
"""AI-based transliteration from Romanized Sinhala to Sinhala script"""
|
| 1196 |
+
try:
|
| 1197 |
+
if sinhala_transliterator is None:
|
| 1198 |
+
# Fallback to rule-based transliteration
|
| 1199 |
+
logger.info("AI transliterator not available, using rule-based fallback")
|
| 1200 |
+
return rule_based_transliterate_singlish_to_sinhala(text)
|
| 1201 |
+
|
| 1202 |
+
# Use AI model for transliteration
|
| 1203 |
+
result = sinhala_transliterator(text, max_length=256, num_return_sequences=1)
|
| 1204 |
+
transliterated_text = result[0]['generated_text']
|
| 1205 |
+
|
| 1206 |
+
logger.info(f"AI transliteration: '{text}' -> '{transliterated_text}'")
|
| 1207 |
+
return transliterated_text
|
| 1208 |
+
|
| 1209 |
+
except Exception as e:
|
| 1210 |
+
logger.error(f"AI transliteration failed: {e}")
|
| 1211 |
+
return rule_based_transliterate_singlish_to_sinhala(text)
|
| 1212 |
+
|
| 1213 |
+
def rule_based_transliterate_singlish_to_sinhala(text: str) -> str:
|
| 1214 |
+
"""Fallback rule-based transliteration for Romanized Sinhala"""
|
| 1215 |
+
try:
|
| 1216 |
+
# Common Singlish to Sinhala mappings (simplified)
|
| 1217 |
+
singlish_to_sinhala_map = {
|
| 1218 |
+
'mokadda': 'මොකද්ද',
|
| 1219 |
+
'kohomada': 'කොහොමද',
|
| 1220 |
+
'api': 'අපි',
|
| 1221 |
+
'oya': 'ඔයා',
|
| 1222 |
+
'mama': 'මම',
|
| 1223 |
+
'eka': 'එක',
|
| 1224 |
+
'meka': 'මේක',
|
| 1225 |
+
'dan': 'දැන්',
|
| 1226 |
+
'kiyala': 'කියලා',
|
| 1227 |
+
'gana': 'ගැන',
|
| 1228 |
+
'genna': 'ගන්න',
|
| 1229 |
+
'danna': 'දන්න',
|
| 1230 |
+
'dennna': 'දෙන්න',
|
| 1231 |
+
'mata': 'මට',
|
| 1232 |
+
'ape': 'අපේ',
|
| 1233 |
+
'thiyenne': 'තියෙන්නේ',
|
| 1234 |
+
'kiyanawa': 'කියනවා',
|
| 1235 |
+
'balanawa': 'බලනවා',
|
| 1236 |
+
'pennanna': 'පෙන්නන්න',
|
| 1237 |
+
'sampura': 'සම්පූර්ණ',
|
| 1238 |
+
'mudal': 'මුදල්',
|
| 1239 |
+
'pasal': 'පාසල්',
|
| 1240 |
+
'rajaye': 'රජයේ',
|
| 1241 |
+
'arthikaya': 'ආර්ථිකය',
|
| 1242 |
+
'kara': 'කර',
|
| 1243 |
+
'karanna': 'කරන්න',
|
| 1244 |
+
'giya': 'ගිය',
|
| 1245 |
+
'yanawa': 'යනවා',
|
| 1246 |
+
'enawa': 'එනවා',
|
| 1247 |
+
'inne': 'ඉන්නේ',
|
| 1248 |
+
'yanna': 'යන්න',
|
| 1249 |
+
'enna': 'එන්න'
|
| 1250 |
+
}
|
| 1251 |
+
|
| 1252 |
+
# Simple word-by-word replacement
|
| 1253 |
+
words = text.lower().split()
|
| 1254 |
+
transliterated_words = []
|
| 1255 |
+
|
| 1256 |
+
for word in words:
|
| 1257 |
+
# Remove punctuation for mapping
|
| 1258 |
+
clean_word = re.sub(r'[^\w]', '', word)
|
| 1259 |
+
if clean_word in singlish_to_sinhala_map:
|
| 1260 |
+
transliterated_words.append(singlish_to_sinhala_map[clean_word])
|
| 1261 |
+
else:
|
| 1262 |
+
transliterated_words.append(word) # Keep original if no mapping
|
| 1263 |
+
|
| 1264 |
+
logger.info(f"Rule-based transliteration: '{text}' -> '{' '.join(transliterated_words)}'")
|
| 1265 |
+
return ' '.join(transliterated_words)
|
| 1266 |
+
|
| 1267 |
+
except Exception as e:
|
| 1268 |
+
logger.error(f"Rule-based transliteration error: {e}")
|
| 1269 |
+
return text # Return original text if transliteration fails
|
| 1270 |
+
|
| 1271 |
+
def translate_text(text: str, target_language: str = 'en') -> str:
|
| 1272 |
+
"""Translate text using Google Translate"""
|
| 1273 |
+
try:
|
| 1274 |
+
result = translator.translate(text, dest=target_language)
|
| 1275 |
+
return result.text
|
| 1276 |
+
except Exception as e:
|
| 1277 |
+
logger.error(f"Translation error: {e}")
|
| 1278 |
+
return text # Return original text if translation fails
|
| 1279 |
+
|
| 1280 |
+
def process_multilingual_input(user_message: str) -> tuple:
|
| 1281 |
+
"""
|
| 1282 |
+
AI-enhanced multilingual input processing:
|
| 1283 |
+
AI Language Detection -> AI Transliteration -> Google Translate -> English
|
| 1284 |
+
"""
|
| 1285 |
+
processed_message = user_message
|
| 1286 |
+
transliteration_used = False
|
| 1287 |
+
ai_detection_used = False
|
| 1288 |
+
|
| 1289 |
+
# Step 1: AI-based language detection
|
| 1290 |
+
language_info = ai_detect_language(user_message)
|
| 1291 |
+
original_language = language_info['language']
|
| 1292 |
+
confidence = language_info['confidence']
|
| 1293 |
+
detection_method = language_info['detection_method']
|
| 1294 |
+
|
| 1295 |
+
logger.info(f"Language detection: {original_language} (confidence: {confidence:.2f}, method: {detection_method})")
|
| 1296 |
+
|
| 1297 |
+
# Determine processing based on detected language
|
| 1298 |
+
if language_info['is_sinhala_unicode']:
|
| 1299 |
+
# Direct Sinhala Unicode -> English translation
|
| 1300 |
+
logger.info("Processing Sinhala Unicode input")
|
| 1301 |
+
original_language = 'si'
|
| 1302 |
+
needs_translation = True
|
| 1303 |
+
processed_message = translate_text(user_message, 'en')
|
| 1304 |
+
logger.info(f"Translated from Sinhala: '{user_message}' -> '{processed_message}'")
|
| 1305 |
+
|
| 1306 |
+
elif language_info['is_romanized_sinhala']:
|
| 1307 |
+
# Romanized Sinhala -> AI Transliteration -> Translation
|
| 1308 |
+
logger.info("Processing Romanized Sinhala (Singlish) input")
|
| 1309 |
+
original_language = 'singlish'
|
| 1310 |
+
needs_translation = True
|
| 1311 |
+
transliteration_used = True
|
| 1312 |
+
ai_detection_used = detection_method == 'ai'
|
| 1313 |
+
|
| 1314 |
+
try:
|
| 1315 |
+
# Step 1: AI-based transliteration
|
| 1316 |
+
sinhala_text = ai_transliterate_singlish_to_sinhala(user_message)
|
| 1317 |
+
logger.info(f"AI transliterated: '{user_message}' -> '{sinhala_text}'")
|
| 1318 |
+
|
| 1319 |
+
# Step 2: Translate Sinhala to English for search
|
| 1320 |
+
processed_message = translate_text(sinhala_text, 'en')
|
| 1321 |
+
logger.info(f"Translated to English: '{sinhala_text}' -> '{processed_message}'")
|
| 1322 |
+
|
| 1323 |
+
except Exception as e:
|
| 1324 |
+
logger.error(f"Error in AI processing pipeline: {e}")
|
| 1325 |
+
# Fallback: try direct translation or keep original
|
| 1326 |
+
try:
|
| 1327 |
+
processed_message = translate_text(user_message, 'en')
|
| 1328 |
+
logger.info(f"Fallback translation: '{user_message}' -> '{processed_message}'")
|
| 1329 |
+
except:
|
| 1330 |
+
processed_message = user_message
|
| 1331 |
+
needs_translation = False
|
| 1332 |
+
transliteration_used = False
|
| 1333 |
+
logger.info("Using original text for search")
|
| 1334 |
+
|
| 1335 |
+
else:
|
| 1336 |
+
# English or other languages
|
| 1337 |
+
logger.info("Processing as English input")
|
| 1338 |
+
original_language = 'en'
|
| 1339 |
+
needs_translation = False
|
| 1340 |
+
processed_message = user_message
|
| 1341 |
+
|
| 1342 |
+
return processed_message, original_language, needs_translation, transliteration_used, ai_detection_used, confidence
|
| 1343 |
+
|
| 1344 |
+
def translate_response_if_needed(response: str, original_language: str) -> str:
|
| 1345 |
+
"""Translate response back to original language if needed"""
|
| 1346 |
+
if original_language == 'si':
|
| 1347 |
+
# Translate back to Sinhala
|
| 1348 |
+
try:
|
| 1349 |
+
translated_response = translate_text(response, 'si')
|
| 1350 |
+
logger.info(f"Translated response to Sinhala: '{response[:100]}...' -> '{translated_response[:100]}...'")
|
| 1351 |
+
return translated_response
|
| 1352 |
+
except Exception as e:
|
| 1353 |
+
logger.error(f"Error translating response to Sinhala: {e}")
|
| 1354 |
+
return response
|
| 1355 |
+
elif original_language == 'singlish':
|
| 1356 |
+
# For Singlish, we can optionally provide a mixed response
|
| 1357 |
+
# For now, keep English response but could enhance later
|
| 1358 |
+
return response
|
| 1359 |
+
|
| 1360 |
+
return response
|
| 1361 |
+
|
| 1362 |
+
def get_pinecone_index():
|
| 1363 |
+
"""Get the budget proposals Pinecone index"""
|
| 1364 |
+
try:
|
| 1365 |
+
return pc.Index(BUDGET_INDEX_NAME)
|
| 1366 |
+
except Exception as e:
|
| 1367 |
+
logger.error(f"Error accessing Pinecone index: {e}")
|
| 1368 |
+
return None
|
| 1369 |
+
|
| 1370 |
+
def search_budget_proposals(query: str) -> str:
|
| 1371 |
+
"""Search budget proposals using the semantic search API"""
|
| 1372 |
+
try:
|
| 1373 |
+
import requests
|
| 1374 |
+
|
| 1375 |
+
# Use the deployed semantic search API
|
| 1376 |
+
response = requests.post(
|
| 1377 |
+
f"https://danulr05-budget-proposals-search-api.hf.space/api/search",
|
| 1378 |
+
json={"query": query, "top_k": 5},
|
| 1379 |
+
timeout=10
|
| 1380 |
+
)
|
| 1381 |
+
|
| 1382 |
+
if response.status_code == 200:
|
| 1383 |
+
data = response.json()
|
| 1384 |
+
results = data.get("results", [])
|
| 1385 |
+
|
| 1386 |
+
if not results:
|
| 1387 |
+
return "No relevant budget proposals found in the database."
|
| 1388 |
+
|
| 1389 |
+
# Build context from search results
|
| 1390 |
+
context_parts = []
|
| 1391 |
+
for result in results[:3]: # Limit to top 3 results
|
| 1392 |
+
file_path = result.get("file_path", "")
|
| 1393 |
+
category = result.get("category", "")
|
| 1394 |
+
summary = result.get("summary", "")
|
| 1395 |
+
cost = result.get("costLKR", "")
|
| 1396 |
+
title = result.get("title", "")
|
| 1397 |
+
content = result.get("content", "") # Get the actual content
|
| 1398 |
+
|
| 1399 |
+
context_parts.append(f"From {file_path} ({category}): {title}")
|
| 1400 |
+
if content:
|
| 1401 |
+
context_parts.append(f"Content: {content}")
|
| 1402 |
+
elif summary:
|
| 1403 |
+
context_parts.append(f"Summary: {summary}")
|
| 1404 |
+
if cost and cost != "No Costing Available":
|
| 1405 |
+
context_parts.append(f"Cost: {cost}")
|
| 1406 |
+
|
| 1407 |
+
return "\n\n".join(context_parts)
|
| 1408 |
+
else:
|
| 1409 |
+
return f"Error accessing semantic search API: {response.status_code}"
|
| 1410 |
+
|
| 1411 |
+
except Exception as e:
|
| 1412 |
+
logger.error(f"Error searching budget proposals: {e}")
|
| 1413 |
+
return f"Error searching database: {str(e)}"
|
| 1414 |
+
|
| 1415 |
+
# Create the RAG tool
|
| 1416 |
+
search_tool = Tool(
|
| 1417 |
+
name="search_budget_proposals",
|
| 1418 |
+
description="Search for relevant budget proposals in the vector database. Use this when you need specific information about budget proposals, costs, policies, or implementation details.",
|
| 1419 |
+
func=search_budget_proposals
|
| 1420 |
+
)
|
| 1421 |
+
|
| 1422 |
+
# Create the prompt template for the agent
|
| 1423 |
+
agent_prompt = ChatPromptTemplate.from_messages([
|
| 1424 |
+
("system", """You are a helpful assistant for budget proposals in Sri Lanka. You have access to a vector database containing detailed information about various budget proposals. You can communicate in English, Sinhala, and understand Singlish (Sinhala written in English letters).
|
| 1425 |
+
|
| 1426 |
+
When a user asks about budget proposals, you should:
|
| 1427 |
+
1. Use the search_budget_proposals tool to find relevant information
|
| 1428 |
+
2. Provide accurate, detailed responses based on the retrieved information
|
| 1429 |
+
3. Always cite the source documents when mentioning specific proposals
|
| 1430 |
+
4. Be professional but approachable in any language
|
| 1431 |
+
5. If the search doesn't return relevant results, acknowledge this and provide general guidance
|
| 1432 |
+
6. Respond in the same language or style as the user's question when possible
|
| 1433 |
+
|
| 1434 |
+
Guidelines:
|
| 1435 |
+
- Always use the search tool for specific questions about budget proposals
|
| 1436 |
+
- Include source citations for any mention of proposals, costs, policies, revenue, or implementation
|
| 1437 |
+
- Keep responses clear and informative in any language
|
| 1438 |
+
- Use a balanced tone - helpful but not overly casual
|
| 1439 |
+
- If asked about topics not covered, redirect to relevant topics professionally
|
| 1440 |
+
- Be culturally sensitive when discussing Sri Lankan policies and economic matters
|
| 1441 |
+
- When responding in Sinhala, use appropriate formal language for policy discussions"""),
|
| 1442 |
+
MessagesPlaceholder(variable_name="chat_history"),
|
| 1443 |
+
("human", "{input}"),
|
| 1444 |
+
MessagesPlaceholder(variable_name="agent_scratchpad")
|
| 1445 |
+
])
|
| 1446 |
+
|
| 1447 |
+
# Store conversation memories for different sessions
|
| 1448 |
+
conversation_memories: Dict[str, ConversationBufferWindowMemory] = {}
|
| 1449 |
+
|
| 1450 |
+
def get_or_create_memory(session_id: str) -> ConversationBufferWindowMemory:
|
| 1451 |
+
"""Get or create a memory instance for a session"""
|
| 1452 |
+
if session_id not in conversation_memories:
|
| 1453 |
+
# Create new memory with window of 10 messages (5 exchanges)
|
| 1454 |
+
conversation_memories[session_id] = ConversationBufferWindowMemory(
|
| 1455 |
+
k=10, # Remember last 10 messages
|
| 1456 |
+
return_messages=True,
|
| 1457 |
+
memory_key="chat_history"
|
| 1458 |
+
)
|
| 1459 |
+
logger.info(f"Created new memory for session: {session_id}")
|
| 1460 |
+
|
| 1461 |
+
return conversation_memories[session_id]
|
| 1462 |
+
|
| 1463 |
+
def create_agent(session_id: str) -> AgentExecutor:
|
| 1464 |
+
"""Create a LangChain agent with memory and RAG capabilities"""
|
| 1465 |
+
memory = get_or_create_memory(session_id)
|
| 1466 |
+
|
| 1467 |
+
# Create the agent
|
| 1468 |
+
agent = create_openai_functions_agent(
|
| 1469 |
+
llm=llm,
|
| 1470 |
+
tools=[search_tool],
|
| 1471 |
+
prompt=agent_prompt
|
| 1472 |
+
)
|
| 1473 |
+
|
| 1474 |
+
# Create agent executor with memory
|
| 1475 |
+
agent_executor = AgentExecutor(
|
| 1476 |
+
agent=agent,
|
| 1477 |
+
tools=[search_tool],
|
| 1478 |
+
memory=memory,
|
| 1479 |
+
verbose=False,
|
| 1480 |
+
handle_parsing_errors=True
|
| 1481 |
+
)
|
| 1482 |
+
|
| 1483 |
+
return agent_executor
|
| 1484 |
+
|
| 1485 |
+
def get_available_pdfs() -> List[str]:
|
| 1486 |
+
"""Dynamically get list of available PDF files from assets directory"""
|
| 1487 |
+
try:
|
| 1488 |
+
import os
|
| 1489 |
+
pdf_dir = "assets/pdfs"
|
| 1490 |
+
if os.path.exists(pdf_dir):
|
| 1491 |
+
pdf_files = [f for f in os.listdir(pdf_dir) if f.lower().endswith('.pdf')]
|
| 1492 |
+
return pdf_files
|
| 1493 |
+
else:
|
| 1494 |
+
# Fallback to known PDFs if directory doesn't exist
|
| 1495 |
+
return ['MLB.pdf', 'Cigs.pdf', 'Elec.pdf', 'Audit_EPF.pdf', 'EPF.pdf', 'Discretion.pdf', '1750164001872.pdf']
|
| 1496 |
+
except Exception as e:
|
| 1497 |
+
logger.error(f"Error getting available PDFs: {e}")
|
| 1498 |
+
# Fallback to known PDFs
|
| 1499 |
+
return ['MLB.pdf', 'Cigs.pdf', 'Elec.pdf', 'Audit_EPF.pdf', 'EPF.pdf', 'Discretion.pdf', '1750164001872.pdf']
|
| 1500 |
+
|
| 1501 |
+
def extract_sources_from_response(response: str) -> List[str]:
|
| 1502 |
+
"""Extract source documents mentioned in the response"""
|
| 1503 |
+
sources = []
|
| 1504 |
+
|
| 1505 |
+
# Get dynamically available PDF files
|
| 1506 |
+
available_pdfs = get_available_pdfs()
|
| 1507 |
+
|
| 1508 |
+
# Look for source patterns like "(Source: MLB.pdf)" or "(Sources: MLB.pdf, EPF.pdf)"
|
| 1509 |
+
for pdf in available_pdfs:
|
| 1510 |
+
if pdf in response:
|
| 1511 |
+
sources.append(pdf)
|
| 1512 |
+
|
| 1513 |
+
return list(set(sources)) # Remove duplicates
|
| 1514 |
+
|
| 1515 |
+
def generate_response_with_rag(user_message: str, session_id: str) -> Dict[str, Any]:
|
| 1516 |
+
"""Generate response using RAG with memory and multilingual support"""
|
| 1517 |
+
try:
|
| 1518 |
+
# Process multilingual input
|
| 1519 |
+
processed_message, original_language, needs_translation, transliteration_used, ai_detection_used, confidence = process_multilingual_input(user_message)
|
| 1520 |
+
logger.info(f"Input processing: original='{user_message}', processed='{processed_message}', lang='{original_language}', transliteration='{transliteration_used}', ai_detection='{ai_detection_used}', confidence='{confidence:.2f}'")
|
| 1521 |
+
|
| 1522 |
+
# Get or create memory for this session
|
| 1523 |
+
memory = get_or_create_memory(session_id)
|
| 1524 |
+
|
| 1525 |
+
# Search for relevant context using processed (English) message
|
| 1526 |
+
search_context = search_budget_proposals(processed_message)
|
| 1527 |
+
|
| 1528 |
+
# Get conversation history for context
|
| 1529 |
+
chat_history = memory.chat_memory.messages
|
| 1530 |
+
conversation_context = ""
|
| 1531 |
+
if chat_history:
|
| 1532 |
+
# Get last few messages for context
|
| 1533 |
+
recent_messages = chat_history[-6:] # Last 3 exchanges
|
| 1534 |
+
conversation_parts = []
|
| 1535 |
+
for msg in recent_messages:
|
| 1536 |
+
if isinstance(msg, HumanMessage):
|
| 1537 |
+
conversation_parts.append(f"User: {msg.content}")
|
| 1538 |
+
elif isinstance(msg, AIMessage):
|
| 1539 |
+
conversation_parts.append(f"Assistant: {msg.content}")
|
| 1540 |
+
conversation_context = "\n".join(conversation_parts)
|
| 1541 |
+
|
| 1542 |
+
# Create a prompt with conversation history and retrieved context
|
| 1543 |
+
language_instruction = ""
|
| 1544 |
+
if original_language == 'si':
|
| 1545 |
+
language_instruction = "\n\nIMPORTANT: The user asked in Sinhala. Please respond in Sinhala using proper Sinhala script and formal language appropriate for policy discussions."
|
| 1546 |
+
elif original_language == 'singlish':
|
| 1547 |
+
if transliteration_used:
|
| 1548 |
+
language_instruction = "\n\nNote: The user used Romanized Sinhala (transliterated via Swabhasha). Please respond in Sinhala using proper Sinhala script and formal language appropriate for policy discussions."
|
| 1549 |
+
else:
|
| 1550 |
+
language_instruction = "\n\nNote: The user used Singlish (Sinhala words in English letters). You may respond in English but consider using some familiar Sri Lankan terminology where appropriate."
|
| 1551 |
+
|
| 1552 |
+
prompt = f"""You are a helpful assistant for budget proposals in Sri Lanka. You can communicate in English, Sinhala, and understand Singlish.
|
| 1553 |
+
|
| 1554 |
+
Based on the following information from the budget proposals database:
|
| 1555 |
+
|
| 1556 |
+
{search_context}
|
| 1557 |
+
|
| 1558 |
+
{conversation_context}
|
| 1559 |
+
|
| 1560 |
+
Current user question: {processed_message}
|
| 1561 |
+
Original user input: {user_message}
|
| 1562 |
+
{language_instruction}
|
| 1563 |
+
|
| 1564 |
+
Guidelines:
|
| 1565 |
+
- Be professional but approachable in any language
|
| 1566 |
+
- Include specific details from the retrieved information
|
| 1567 |
+
- Cite the source documents when mentioning specific proposals
|
| 1568 |
+
- If the search doesn't return relevant results, acknowledge this and provide general guidance
|
| 1569 |
+
- Keep responses clear and informative
|
| 1570 |
+
- Reference previous conversation context when relevant
|
| 1571 |
+
- Maintain conversation continuity
|
| 1572 |
+
- Be culturally sensitive when discussing Sri Lankan policies
|
| 1573 |
+
- When responding in Sinhala, use appropriate formal language for policy discussions
|
| 1574 |
+
|
| 1575 |
+
Please provide a helpful response:"""
|
| 1576 |
+
|
| 1577 |
+
# Generate response using the LLM directly
|
| 1578 |
+
response = llm.invoke(prompt)
|
| 1579 |
+
response_text = response.content.strip()
|
| 1580 |
+
|
| 1581 |
+
# Translate response back if needed
|
| 1582 |
+
if needs_translation and (original_language == 'si' or (original_language == 'singlish' and transliteration_used)):
|
| 1583 |
+
response_text = translate_response_if_needed(response_text, original_language)
|
| 1584 |
+
|
| 1585 |
+
# Extract sources from response
|
| 1586 |
+
sources = extract_sources_from_response(response_text)
|
| 1587 |
+
|
| 1588 |
+
# Add messages to memory (store original user message for context)
|
| 1589 |
+
memory.chat_memory.add_user_message(user_message)
|
| 1590 |
+
memory.chat_memory.add_ai_message(response_text)
|
| 1591 |
+
|
| 1592 |
+
# Get updated conversation history for context
|
| 1593 |
+
chat_history = memory.chat_memory.messages
|
| 1594 |
+
|
| 1595 |
+
return {
|
| 1596 |
+
"response": response_text,
|
| 1597 |
+
"confidence": "high",
|
| 1598 |
+
"session_id": session_id,
|
| 1599 |
+
"conversation_length": len(chat_history),
|
| 1600 |
+
"memory_used": True,
|
| 1601 |
+
"rag_used": True,
|
| 1602 |
+
"sources": sources,
|
| 1603 |
+
"language_detected": original_language,
|
| 1604 |
+
"translation_used": needs_translation,
|
| 1605 |
+
"transliteration_used": transliteration_used,
|
| 1606 |
+
"ai_detection_used": ai_detection_used,
|
| 1607 |
+
"detection_confidence": confidence
|
| 1608 |
+
}
|
| 1609 |
+
|
| 1610 |
+
except Exception as e:
|
| 1611 |
+
logger.error(f"Error generating response with RAG: {e}")
|
| 1612 |
+
# Provide error message in appropriate language
|
| 1613 |
+
error_message = "I'm sorry, I'm having trouble processing your request right now. Please try again later."
|
| 1614 |
+
if original_language == 'si':
|
| 1615 |
+
try:
|
| 1616 |
+
error_message = translate_text(error_message, 'si')
|
| 1617 |
+
except:
|
| 1618 |
+
pass # Keep English if translation fails
|
| 1619 |
+
|
| 1620 |
+
return {
|
| 1621 |
+
"response": error_message,
|
| 1622 |
+
"confidence": "error",
|
| 1623 |
+
"session_id": session_id,
|
| 1624 |
+
"memory_used": False,
|
| 1625 |
+
"rag_used": False,
|
| 1626 |
+
"sources": [],
|
| 1627 |
+
"language_detected": original_language if 'original_language' in locals() else 'en',
|
| 1628 |
+
"translation_used": False,
|
| 1629 |
+
"transliteration_used": False,
|
| 1630 |
+
"ai_detection_used": False,
|
| 1631 |
+
"detection_confidence": 0.0
|
| 1632 |
+
}
|
| 1633 |
+
|
| 1634 |
+
def clear_session_memory(session_id: str) -> bool:
|
| 1635 |
+
"""Clear memory for a specific session"""
|
| 1636 |
+
try:
|
| 1637 |
+
if session_id in conversation_memories:
|
| 1638 |
+
del conversation_memories[session_id]
|
| 1639 |
+
logger.info(f"Cleared memory for session: {session_id}")
|
| 1640 |
+
return True
|
| 1641 |
+
return False
|
| 1642 |
+
except Exception as e:
|
| 1643 |
+
logger.error(f"Error clearing memory: {e}")
|
| 1644 |
+
return False
|
| 1645 |
+
|
| 1646 |
+
@app.route('/api/chat', methods=['POST'])
|
| 1647 |
+
def chat():
|
| 1648 |
+
"""Enhanced chat endpoint with memory"""
|
| 1649 |
+
try:
|
| 1650 |
+
data = request.get_json()
|
| 1651 |
+
user_message = data.get('message', '').strip()
|
| 1652 |
+
session_id = data.get('session_id', 'default')
|
| 1653 |
+
|
| 1654 |
+
if not user_message:
|
| 1655 |
+
return jsonify({
|
| 1656 |
+
"error": "Message is required"
|
| 1657 |
+
}), 400
|
| 1658 |
+
|
| 1659 |
+
# Generate response with memory
|
| 1660 |
+
result = generate_response_with_rag(user_message, session_id)
|
| 1661 |
+
|
| 1662 |
+
return jsonify({
|
| 1663 |
+
"response": result["response"],
|
| 1664 |
+
"confidence": result["confidence"],
|
| 1665 |
+
"session_id": session_id,
|
| 1666 |
+
"conversation_length": result.get("conversation_length", 0),
|
| 1667 |
+
"memory_used": result.get("memory_used", False),
|
| 1668 |
+
"rag_used": result.get("rag_used", False),
|
| 1669 |
+
"sources": result.get("sources", []),
|
| 1670 |
+
"user_message": user_message,
|
| 1671 |
+
"language_detected": result.get("language_detected", "en"),
|
| 1672 |
+
"translation_used": result.get("translation_used", False),
|
| 1673 |
+
"transliteration_used": result.get("transliteration_used", False),
|
| 1674 |
+
"ai_detection_used": result.get("ai_detection_used", False),
|
| 1675 |
+
"detection_confidence": result.get("detection_confidence", 0.0)
|
| 1676 |
+
})
|
| 1677 |
+
|
| 1678 |
+
except Exception as e:
|
| 1679 |
+
logger.error(f"Chat API error: {e}")
|
| 1680 |
+
return jsonify({"error": str(e)}), 500
|
| 1681 |
+
|
| 1682 |
+
@app.route('/api/chat/clear', methods=['POST'])
|
| 1683 |
+
def clear_chat():
|
| 1684 |
+
"""Clear chat memory for a session"""
|
| 1685 |
+
try:
|
| 1686 |
+
data = request.get_json()
|
| 1687 |
+
session_id = data.get('session_id', 'default')
|
| 1688 |
+
|
| 1689 |
+
success = clear_session_memory(session_id)
|
| 1690 |
+
|
| 1691 |
+
return jsonify({
|
| 1692 |
+
"success": success,
|
| 1693 |
+
"session_id": session_id,
|
| 1694 |
+
"message": "Chat memory cleared successfully" if success else "Session not found"
|
| 1695 |
+
})
|
| 1696 |
+
|
| 1697 |
+
except Exception as e:
|
| 1698 |
+
logger.error(f"Clear chat error: {e}")
|
| 1699 |
+
return jsonify({"error": str(e)}), 500
|
| 1700 |
+
|
| 1701 |
+
@app.route('/api/chat/sessions', methods=['GET'])
|
| 1702 |
+
def list_sessions():
|
| 1703 |
+
"""List all active chat sessions"""
|
| 1704 |
+
try:
|
| 1705 |
+
sessions = []
|
| 1706 |
+
for session_id, memory in conversation_memories.items():
|
| 1707 |
+
messages = memory.chat_memory.messages
|
| 1708 |
+
sessions.append({
|
| 1709 |
+
"session_id": session_id,
|
| 1710 |
+
"message_count": len(messages),
|
| 1711 |
+
"last_activity": datetime.now().isoformat() # Simplified for now
|
| 1712 |
+
})
|
| 1713 |
+
|
| 1714 |
+
return jsonify({
|
| 1715 |
+
"sessions": sessions,
|
| 1716 |
+
"total_sessions": len(sessions)
|
| 1717 |
+
})
|
| 1718 |
+
|
| 1719 |
+
except Exception as e:
|
| 1720 |
+
logger.error(f"List sessions error: {e}")
|
| 1721 |
+
return jsonify({"error": str(e)}), 500
|
| 1722 |
+
|
| 1723 |
+
@app.route('/api/chat/history/<session_id>', methods=['GET'])
|
| 1724 |
+
def get_chat_history(session_id: str):
|
| 1725 |
+
"""Get chat history for a specific session"""
|
| 1726 |
+
try:
|
| 1727 |
+
if session_id not in conversation_memories:
|
| 1728 |
+
return jsonify({
|
| 1729 |
+
"session_id": session_id,
|
| 1730 |
+
"history": [],
|
| 1731 |
+
"message_count": 0
|
| 1732 |
+
})
|
| 1733 |
+
|
| 1734 |
+
memory = conversation_memories[session_id]
|
| 1735 |
+
messages = memory.chat_memory.messages
|
| 1736 |
+
|
| 1737 |
+
history = []
|
| 1738 |
+
for msg in messages:
|
| 1739 |
+
if isinstance(msg, HumanMessage):
|
| 1740 |
+
history.append({
|
| 1741 |
+
"type": "human",
|
| 1742 |
+
"content": msg.content,
|
| 1743 |
+
"timestamp": datetime.now().isoformat()
|
| 1744 |
+
})
|
| 1745 |
+
elif isinstance(msg, AIMessage):
|
| 1746 |
+
history.append({
|
| 1747 |
+
"type": "ai",
|
| 1748 |
+
"content": msg.content,
|
| 1749 |
+
"timestamp": datetime.now().isoformat()
|
| 1750 |
+
})
|
| 1751 |
+
|
| 1752 |
+
return jsonify({
|
| 1753 |
+
"session_id": session_id,
|
| 1754 |
+
"history": history,
|
| 1755 |
+
"message_count": len(history)
|
| 1756 |
+
})
|
| 1757 |
+
|
| 1758 |
+
except Exception as e:
|
| 1759 |
+
logger.error(f"Get chat history error: {e}")
|
| 1760 |
+
return jsonify({"error": str(e)}), 500
|
| 1761 |
+
|
| 1762 |
+
@app.route('/api/chat/health', methods=['GET'])
|
| 1763 |
+
def chat_health():
|
| 1764 |
+
"""Health check for the enhanced chatbot"""
|
| 1765 |
+
try:
|
| 1766 |
+
# Test LangChain connection and vector database
|
| 1767 |
+
test_agent = create_agent("health_check")
|
| 1768 |
+
test_response = test_agent.invoke({"input": "Hello"})
|
| 1769 |
+
|
| 1770 |
+
# Test vector database connection
|
| 1771 |
+
pc_index = get_pinecone_index()
|
| 1772 |
+
vector_db_status = "connected" if pc_index else "disconnected"
|
| 1773 |
+
|
| 1774 |
+
return jsonify({
|
| 1775 |
+
"status": "healthy",
|
| 1776 |
+
"message": "Enhanced budget proposals chatbot with RAG is running",
|
| 1777 |
+
"langchain_status": "connected" if test_response else "disconnected",
|
| 1778 |
+
"vector_db_status": vector_db_status,
|
| 1779 |
+
"rag_enabled": True,
|
| 1780 |
+
"active_sessions": len(conversation_memories),
|
| 1781 |
+
"memory_enabled": True
|
| 1782 |
+
})
|
| 1783 |
+
except Exception as e:
|
| 1784 |
+
return jsonify({
|
| 1785 |
+
"status": "unhealthy",
|
| 1786 |
+
"message": f"Error: {str(e)}"
|
| 1787 |
+
}), 500
|
| 1788 |
+
|
| 1789 |
+
@app.route('/api/chat/debug/<session_id>', methods=['GET'])
|
| 1790 |
+
def debug_session(session_id: str):
|
| 1791 |
+
"""Debug endpoint to check session memory"""
|
| 1792 |
+
try:
|
| 1793 |
+
memory_exists = session_id in conversation_memories
|
| 1794 |
+
memory_info = {
|
| 1795 |
+
"session_id": session_id,
|
| 1796 |
+
"memory_exists": memory_exists,
|
| 1797 |
+
"total_sessions": len(conversation_memories),
|
| 1798 |
+
"session_keys": list(conversation_memories.keys())
|
| 1799 |
+
}
|
| 1800 |
+
|
| 1801 |
+
if memory_exists:
|
| 1802 |
+
memory = conversation_memories[session_id]
|
| 1803 |
+
messages = memory.chat_memory.messages
|
| 1804 |
+
memory_info.update({
|
| 1805 |
+
"message_count": len(messages),
|
| 1806 |
+
"messages": [
|
| 1807 |
+
{
|
| 1808 |
+
"type": getattr(msg, 'type', 'unknown'),
|
| 1809 |
+
"content": getattr(msg, 'content', '')[:100] + "..." if len(getattr(msg, 'content', '')) > 100 else getattr(msg, 'content', '')
|
| 1810 |
+
}
|
| 1811 |
+
for msg in messages
|
| 1812 |
+
]
|
| 1813 |
+
})
|
| 1814 |
+
|
| 1815 |
+
return jsonify(memory_info)
|
| 1816 |
+
|
| 1817 |
+
except Exception as e:
|
| 1818 |
+
logger.error(f"Debug session error: {e}")
|
| 1819 |
+
return jsonify({"error": str(e)}), 500
|
| 1820 |
+
|
| 1821 |
+
@app.route('/api/chat/suggestions', methods=['GET'])
|
| 1822 |
+
def get_chat_suggestions():
|
| 1823 |
+
"""Get suggested questions for the chatbot with multilingual support"""
|
| 1824 |
+
suggestions = [
|
| 1825 |
+
"What are the maternity leave benefits proposed? 🤱",
|
| 1826 |
+
"How do the cigarette tax proposals work? 💰",
|
| 1827 |
+
"What changes are proposed for electricity tariffs? ⚡",
|
| 1828 |
+
"Tell me about the EPF audit proposals 📊",
|
| 1829 |
+
"What tax reforms are being suggested? 🏛️",
|
| 1830 |
+
"How will these proposals affect the economy? 📈",
|
| 1831 |
+
"What is the cost of implementing these proposals? 💵",
|
| 1832 |
+
"Can you compare the costs of different proposals? ⚖️",
|
| 1833 |
+
"What are the main benefits of these proposals? ✨",
|
| 1834 |
+
"Budget proposals gana kiyanna 📋",
|
| 1835 |
+
"EPF eka gana mokadda thiyenne? 💰",
|
| 1836 |
+
"Electricity bill eka wenas wenawada? ⚡",
|
| 1837 |
+
"Maternity leave benefits kiyannako 🤱",
|
| 1838 |
+
"මේ budget proposals වල cost එක කීයද? 💵",
|
| 1839 |
+
"රජයේ ආර්థික ප්රතිපත්ති ගැන කියන්න 🏛️"
|
| 1840 |
+
]
|
| 1841 |
+
|
| 1842 |
+
return jsonify({
|
| 1843 |
+
"suggestions": suggestions,
|
| 1844 |
+
"supported_languages": ["English", "Sinhala", "Singlish"]
|
| 1845 |
+
})
|
| 1846 |
+
|
| 1847 |
+
@app.route('/api/chat/available-pdfs', methods=['GET'])
|
| 1848 |
+
def get_available_pdfs_endpoint():
|
| 1849 |
+
"""Get list of available PDF files for debugging"""
|
| 1850 |
+
try:
|
| 1851 |
+
available_pdfs = get_available_pdfs()
|
| 1852 |
+
return jsonify({
|
| 1853 |
+
"available_pdfs": available_pdfs,
|
| 1854 |
+
"count": len(available_pdfs),
|
| 1855 |
+
"pdf_directory": "assets/pdfs"
|
| 1856 |
+
})
|
| 1857 |
+
except Exception as e:
|
| 1858 |
+
logger.error(f"Error getting available PDFs: {e}")
|
| 1859 |
+
return jsonify({"error": str(e)}), 500
|
| 1860 |
+
|
| 1861 |
+
@app.route('/api/chat/detect-language', methods=['POST'])
|
| 1862 |
+
def detect_language():
|
| 1863 |
+
"""Test language detection functionality"""
|
| 1864 |
+
try:
|
| 1865 |
+
data = request.get_json()
|
| 1866 |
+
text = data.get('text', '').strip()
|
| 1867 |
+
|
| 1868 |
+
if not text:
|
| 1869 |
+
return jsonify({
|
| 1870 |
+
"error": "Text is required"
|
| 1871 |
+
}), 400
|
| 1872 |
+
|
| 1873 |
+
processed_message, original_language, needs_translation, transliteration_used, ai_detection_used, confidence = process_multilingual_input(text)
|
| 1874 |
+
|
| 1875 |
+
return jsonify({
|
| 1876 |
+
"original_text": text,
|
| 1877 |
+
"processed_text": processed_message,
|
| 1878 |
+
"language_detected": original_language,
|
| 1879 |
+
"translation_needed": needs_translation,
|
| 1880 |
+
"transliteration_used": transliteration_used,
|
| 1881 |
+
"ai_detection_used": ai_detection_used,
|
| 1882 |
+
"detection_confidence": confidence,
|
| 1883 |
+
"contains_sinhala": detect_sinhala_content(text),
|
| 1884 |
+
"is_singlish": detect_singlish(text)
|
| 1885 |
+
})
|
| 1886 |
+
|
| 1887 |
+
except Exception as e:
|
| 1888 |
+
logger.error(f"Language detection error: {e}")
|
| 1889 |
+
return jsonify({"error": str(e)}), 500
|
| 1890 |
+
|
| 1891 |
+
@app.route('/', methods=['GET'])
|
| 1892 |
+
def home():
|
| 1893 |
+
"""Home endpoint with API documentation"""
|
| 1894 |
+
return jsonify({
|
| 1895 |
+
"message": "Multilingual Budget Proposals Chatbot API with Swabhasha Pipeline",
|
| 1896 |
+
"version": "2.1.0",
|
| 1897 |
+
"supported_languages": ["English", "Sinhala", "Romanized Sinhala (Singlish)"],
|
| 1898 |
+
"features": ["RAG", "Memory", "Swabhasha Transliteration", "Google Translation", "FAISS Vector Store"],
|
| 1899 |
+
"pipeline": "Romanized Sinhala → Swabhasha → Sinhala Script → Google Translate → English → LLM → Response",
|
| 1900 |
+
"endpoints": {
|
| 1901 |
+
"POST /api/chat": "Chat with memory, RAG, and multilingual support",
|
| 1902 |
+
"POST /api/chat/clear": "Clear chat memory",
|
| 1903 |
+
"GET /api/chat/sessions": "List active sessions",
|
| 1904 |
+
"GET /api/chat/history/<session_id>": "Get chat history",
|
| 1905 |
+
"GET /api/chat/health": "Health check",
|
| 1906 |
+
"GET /api/chat/suggestions": "Get suggested questions (multilingual)",
|
| 1907 |
+
"GET /api/chat/available-pdfs": "Get available PDF files",
|
| 1908 |
+
"POST /api/chat/detect-language": "Test language detection"
|
| 1909 |
+
},
|
| 1910 |
+
"status": "running"
|
| 1911 |
+
})
|
| 1912 |
+
|
| 1913 |
+
if __name__ == '__main__':
|
| 1914 |
+
app.run(debug=False, host='0.0.0.0', port=7860)
|
| 1915 |
+
#!/usr/bin/env python3
|
| 1916 |
+
"""
|
| 1917 |
+
Enhanced Budget Proposals Chatbot API using LangChain with Memory and Agentic RAG
|
| 1918 |
+
"""
|
| 1919 |
+
|
| 1920 |
+
from flask import Flask, request, jsonify
|
| 1921 |
+
from flask_cors import CORS
|
| 1922 |
+
import os
|
| 1923 |
+
import logging
|
| 1924 |
+
import json
|
| 1925 |
+
from datetime import datetime
|
| 1926 |
+
from typing import Dict, List, Any
|
| 1927 |
+
|
| 1928 |
+
# LangChain imports
|
| 1929 |
+
from langchain_google_genai import ChatGoogleGenerativeAI
|
| 1930 |
+
from langchain.memory import ConversationBufferWindowMemory
|
| 1931 |
+
from langchain.schema import HumanMessage, AIMessage
|
| 1932 |
+
from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder
|
| 1933 |
+
from langchain.chains import LLMChain
|
| 1934 |
+
from langchain_community.chat_message_histories import RedisChatMessageHistory
|
| 1935 |
+
from langchain.tools import Tool
|
| 1936 |
+
from langchain.agents import AgentExecutor, create_openai_functions_agent
|
| 1937 |
+
from langchain.agents.openai_functions_agent.base import OpenAIFunctionsAgent
|
| 1938 |
+
from langchain.schema import BaseMessage
|
| 1939 |
+
|
| 1940 |
+
# Vector database imports
|
| 1941 |
+
from pinecone import Pinecone
|
| 1942 |
+
from sentence_transformers import SentenceTransformer
|
| 1943 |
+
|
| 1944 |
+
# Language detection and translation imports
|
| 1945 |
+
from googletrans import Translator
|
| 1946 |
+
import re
|
| 1947 |
+
import requests
|
| 1948 |
+
import json
|
| 1949 |
+
|
| 1950 |
+
# AI-based language processing imports
|
| 1951 |
+
from transformers import pipeline
|
| 1952 |
+
import torch
|
| 1953 |
+
|
| 1954 |
app = Flask(__name__)
|
| 1955 |
CORS(app)
|
| 1956 |
|
|
|
|
| 1986 |
# Initialize translator
|
| 1987 |
translator = Translator()
|
| 1988 |
|
| 1989 |
+
# Initialize AI-based language detection and transliteration models
|
| 1990 |
+
logger.info("Loading AI models...")
|
| 1991 |
+
try:
|
| 1992 |
+
# Use Google Translate's language detection which supports Sinhala
|
| 1993 |
+
# This is more reliable for Sinhala than the HF model
|
| 1994 |
+
language_detector = "google_translate" # Use Google Translate for detection
|
| 1995 |
+
logger.info("Using Google Translate for language detection (supports Sinhala)")
|
| 1996 |
+
except Exception as e:
|
| 1997 |
+
logger.error(f"Failed to initialize language detection: {e}")
|
| 1998 |
+
language_detector = None
|
| 1999 |
+
|
| 2000 |
+
try:
|
| 2001 |
+
# Sinhala transliteration model
|
| 2002 |
+
sinhala_transliterator = pipeline(
|
| 2003 |
+
"text2text-generation",
|
| 2004 |
+
model="deshanksuman/swabhashambart50SinhalaTransliteration"
|
| 2005 |
+
)
|
| 2006 |
+
logger.info("Sinhala transliteration model loaded successfully")
|
| 2007 |
+
except Exception as e:
|
| 2008 |
+
logger.error(f"Failed to load transliteration model: {e}")
|
| 2009 |
+
sinhala_transliterator = None
|
| 2010 |
+
|
| 2011 |
def detect_sinhala_content(text: str) -> bool:
|
| 2012 |
"""Detect if text contains Sinhala characters"""
|
| 2013 |
# Sinhala Unicode range: U+0D80 to U+0DFF
|
| 2014 |
sinhala_pattern = re.compile(r'[\u0D80-\u0DFF]')
|
| 2015 |
return bool(sinhala_pattern.search(text))
|
| 2016 |
|
| 2017 |
+
def ai_detect_language(text: str) -> Dict[str, Any]:
|
| 2018 |
+
"""Enhanced language detection using Google Translate (supports Sinhala)"""
|
| 2019 |
+
try:
|
| 2020 |
+
if language_detector is None:
|
| 2021 |
+
# Fallback to rule-based detection
|
| 2022 |
+
return rule_based_language_detection(text)
|
| 2023 |
+
|
| 2024 |
+
# Check for Sinhala Unicode first (most reliable)
|
| 2025 |
+
has_sinhala_unicode = detect_sinhala_content(text)
|
| 2026 |
+
if has_sinhala_unicode:
|
| 2027 |
+
return {
|
| 2028 |
+
'language': 'si',
|
| 2029 |
+
'confidence': 0.95,
|
| 2030 |
+
'is_sinhala_unicode': True,
|
| 2031 |
+
'is_romanized_sinhala': False,
|
| 2032 |
+
'is_english': False,
|
| 2033 |
+
'detection_method': 'unicode_detection'
|
| 2034 |
+
}
|
| 2035 |
+
|
| 2036 |
+
# Use Google Translate for language detection
|
| 2037 |
+
try:
|
| 2038 |
+
detection_result = translator.detect(text)
|
| 2039 |
+
detected_lang = detection_result.lang
|
| 2040 |
+
confidence = detection_result.confidence
|
| 2041 |
+
|
| 2042 |
+
# Check if it's romanized Sinhala based on content analysis
|
| 2043 |
+
is_romanized_sinhala = (
|
| 2044 |
+
detected_lang in ['en', 'unknown'] and
|
| 2045 |
+
detect_singlish(text)
|
| 2046 |
+
)
|
| 2047 |
+
|
| 2048 |
+
# Override detection if Singlish patterns are strong
|
| 2049 |
+
if is_romanized_sinhala:
|
| 2050 |
+
detected_lang = 'singlish'
|
| 2051 |
+
confidence = max(0.7, confidence) # Boost confidence for Singlish
|
| 2052 |
+
|
| 2053 |
+
return {
|
| 2054 |
+
'language': detected_lang,
|
| 2055 |
+
'confidence': confidence,
|
| 2056 |
+
'is_sinhala_unicode': False,
|
| 2057 |
+
'is_romanized_sinhala': is_romanized_sinhala,
|
| 2058 |
+
'is_english': detected_lang == 'en' and not is_romanized_sinhala,
|
| 2059 |
+
'detection_method': 'google_translate'
|
| 2060 |
+
}
|
| 2061 |
+
|
| 2062 |
+
except Exception as e:
|
| 2063 |
+
logger.error(f"Google Translate detection failed: {e}")
|
| 2064 |
+
# Fallback to rule-based with Singlish detection
|
| 2065 |
+
return enhanced_rule_based_detection(text)
|
| 2066 |
+
|
| 2067 |
+
except Exception as e:
|
| 2068 |
+
logger.error(f"Language detection failed: {e}")
|
| 2069 |
+
return rule_based_language_detection(text)
|
| 2070 |
+
|
| 2071 |
+
def enhanced_rule_based_detection(text: str) -> Dict[str, Any]:
|
| 2072 |
+
"""Enhanced rule-based detection with better Singlish recognition"""
|
| 2073 |
+
has_sinhala_unicode = detect_sinhala_content(text)
|
| 2074 |
+
is_romanized_sinhala = detect_singlish(text) and not has_sinhala_unicode
|
| 2075 |
+
|
| 2076 |
+
# More sophisticated Singlish detection
|
| 2077 |
+
if not has_sinhala_unicode and not is_romanized_sinhala:
|
| 2078 |
+
# Check for common Sinhala sentence patterns in English letters
|
| 2079 |
+
sinhala_patterns = [
|
| 2080 |
+
r'\b(mokadda|kohomada|api|oya|mama)\b',
|
| 2081 |
+
r'\b(eka|meka|thiyenne|kiyala)\b',
|
| 2082 |
+
r'\b(gana|genna|danna|karanna)\b',
|
| 2083 |
+
r'\b(budget|proposal).*\b(gana|eka)\b'
|
| 2084 |
+
]
|
| 2085 |
+
|
| 2086 |
+
text_lower = text.lower()
|
| 2087 |
+
pattern_matches = sum(1 for pattern in sinhala_patterns if re.search(pattern, text_lower))
|
| 2088 |
+
|
| 2089 |
+
if pattern_matches >= 1: # Lower threshold for better detection
|
| 2090 |
+
is_romanized_sinhala = True
|
| 2091 |
+
|
| 2092 |
+
if has_sinhala_unicode:
|
| 2093 |
+
language_code = 'si'
|
| 2094 |
+
confidence = 0.9
|
| 2095 |
+
elif is_romanized_sinhala:
|
| 2096 |
+
language_code = 'singlish'
|
| 2097 |
+
confidence = 0.8
|
| 2098 |
+
else:
|
| 2099 |
+
language_code = 'en'
|
| 2100 |
+
confidence = 0.7
|
| 2101 |
+
|
| 2102 |
+
return {
|
| 2103 |
+
'language': language_code,
|
| 2104 |
+
'confidence': confidence,
|
| 2105 |
+
'is_sinhala_unicode': has_sinhala_unicode,
|
| 2106 |
+
'is_romanized_sinhala': is_romanized_sinhala,
|
| 2107 |
+
'is_english': language_code == 'en',
|
| 2108 |
+
'detection_method': 'enhanced_rule_based'
|
| 2109 |
+
}
|
| 2110 |
+
|
| 2111 |
+
def rule_based_language_detection(text: str) -> Dict[str, Any]:
|
| 2112 |
+
"""Fallback rule-based language detection"""
|
| 2113 |
+
has_sinhala_unicode = detect_sinhala_content(text)
|
| 2114 |
+
is_romanized_sinhala = detect_singlish(text) and not has_sinhala_unicode
|
| 2115 |
+
is_english = not has_sinhala_unicode and not is_romanized_sinhala
|
| 2116 |
+
|
| 2117 |
+
if has_sinhala_unicode:
|
| 2118 |
+
language_code = 'si'
|
| 2119 |
+
elif is_romanized_sinhala:
|
| 2120 |
+
language_code = 'singlish'
|
| 2121 |
+
else:
|
| 2122 |
+
language_code = 'en'
|
| 2123 |
+
|
| 2124 |
+
return {
|
| 2125 |
+
'language': language_code,
|
| 2126 |
+
'confidence': 0.8, # Default confidence for rule-based
|
| 2127 |
+
'is_sinhala_unicode': has_sinhala_unicode,
|
| 2128 |
+
'is_romanized_sinhala': is_romanized_sinhala,
|
| 2129 |
+
'is_english': is_english,
|
| 2130 |
+
'detection_method': 'rule_based'
|
| 2131 |
+
}
|
| 2132 |
+
|
| 2133 |
def detect_singlish(text: str) -> bool:
|
| 2134 |
"""Detect common Singlish patterns and words"""
|
| 2135 |
singlish_words = [
|
|
|
|
| 2148 |
# Consider it Singlish if it has 2 or more Singlish words
|
| 2149 |
return singlish_word_count >= 2
|
| 2150 |
|
| 2151 |
+
def ai_transliterate_singlish_to_sinhala(text: str) -> str:
|
| 2152 |
+
"""AI-based transliteration from Romanized Sinhala to Sinhala script"""
|
| 2153 |
try:
|
| 2154 |
+
if sinhala_transliterator is None:
|
| 2155 |
+
# Fallback to rule-based transliteration
|
| 2156 |
+
logger.info("AI transliterator not available, using rule-based fallback")
|
| 2157 |
+
return rule_based_transliterate_singlish_to_sinhala(text)
|
| 2158 |
|
| 2159 |
+
# Use AI model for transliteration
|
| 2160 |
+
result = sinhala_transliterator(text, max_length=256, num_return_sequences=1)
|
| 2161 |
+
transliterated_text = result[0]['generated_text']
|
| 2162 |
|
| 2163 |
+
logger.info(f"AI transliteration: '{text}' -> '{transliterated_text}'")
|
| 2164 |
+
return transliterated_text
|
| 2165 |
+
|
| 2166 |
+
except Exception as e:
|
| 2167 |
+
logger.error(f"AI transliteration failed: {e}")
|
| 2168 |
+
return rule_based_transliterate_singlish_to_sinhala(text)
|
| 2169 |
+
|
| 2170 |
+
def rule_based_transliterate_singlish_to_sinhala(text: str) -> str:
|
| 2171 |
+
"""Fallback rule-based transliteration for Romanized Sinhala"""
|
| 2172 |
+
try:
|
| 2173 |
# Common Singlish to Sinhala mappings (simplified)
|
| 2174 |
singlish_to_sinhala_map = {
|
| 2175 |
'mokadda': 'මොකද්ද',
|
|
|
|
| 2218 |
else:
|
| 2219 |
transliterated_words.append(word) # Keep original if no mapping
|
| 2220 |
|
| 2221 |
+
logger.info(f"Rule-based transliteration: '{text}' -> '{' '.join(transliterated_words)}'")
|
| 2222 |
return ' '.join(transliterated_words)
|
| 2223 |
|
| 2224 |
except Exception as e:
|
| 2225 |
+
logger.error(f"Rule-based transliteration error: {e}")
|
| 2226 |
return text # Return original text if transliteration fails
|
| 2227 |
|
| 2228 |
def translate_text(text: str, target_language: str = 'en') -> str:
|
|
|
|
| 2236 |
|
| 2237 |
def process_multilingual_input(user_message: str) -> tuple:
|
| 2238 |
"""
|
| 2239 |
+
AI-enhanced multilingual input processing:
|
| 2240 |
+
AI Language Detection -> AI Transliteration -> Google Translate -> English
|
| 2241 |
"""
|
|
|
|
|
|
|
| 2242 |
processed_message = user_message
|
| 2243 |
transliteration_used = False
|
| 2244 |
+
ai_detection_used = False
|
| 2245 |
+
|
| 2246 |
+
# Step 1: AI-based language detection
|
| 2247 |
+
language_info = ai_detect_language(user_message)
|
| 2248 |
+
original_language = language_info['language']
|
| 2249 |
+
confidence = language_info['confidence']
|
| 2250 |
+
detection_method = language_info['detection_method']
|
| 2251 |
+
|
| 2252 |
+
logger.info(f"Language detection: {original_language} (confidence: {confidence:.2f}, method: {detection_method})")
|
| 2253 |
|
| 2254 |
+
# Determine processing based on detected language
|
| 2255 |
+
if language_info['is_sinhala_unicode']:
|
| 2256 |
+
# Direct Sinhala Unicode -> English translation
|
| 2257 |
+
logger.info("Processing Sinhala Unicode input")
|
| 2258 |
original_language = 'si'
|
| 2259 |
needs_translation = True
|
| 2260 |
processed_message = translate_text(user_message, 'en')
|
| 2261 |
logger.info(f"Translated from Sinhala: '{user_message}' -> '{processed_message}'")
|
| 2262 |
+
|
| 2263 |
+
elif language_info['is_romanized_sinhala']:
|
| 2264 |
+
# Romanized Sinhala -> AI Transliteration -> Translation
|
| 2265 |
+
logger.info("Processing Romanized Sinhala (Singlish) input")
|
| 2266 |
original_language = 'singlish'
|
| 2267 |
needs_translation = True
|
| 2268 |
transliteration_used = True
|
| 2269 |
+
ai_detection_used = detection_method == 'ai'
|
| 2270 |
|
| 2271 |
try:
|
| 2272 |
+
# Step 1: AI-based transliteration
|
| 2273 |
+
sinhala_text = ai_transliterate_singlish_to_sinhala(user_message)
|
| 2274 |
+
logger.info(f"AI transliterated: '{user_message}' -> '{sinhala_text}'")
|
| 2275 |
|
| 2276 |
# Step 2: Translate Sinhala to English for search
|
| 2277 |
processed_message = translate_text(sinhala_text, 'en')
|
| 2278 |
+
logger.info(f"Translated to English: '{sinhala_text}' -> '{processed_message}'")
|
| 2279 |
|
| 2280 |
except Exception as e:
|
| 2281 |
+
logger.error(f"Error in AI processing pipeline: {e}")
|
| 2282 |
# Fallback: try direct translation or keep original
|
| 2283 |
try:
|
| 2284 |
processed_message = translate_text(user_message, 'en')
|
| 2285 |
+
logger.info(f"Fallback translation: '{user_message}' -> '{processed_message}'")
|
| 2286 |
except:
|
| 2287 |
processed_message = user_message
|
| 2288 |
needs_translation = False
|
| 2289 |
transliteration_used = False
|
| 2290 |
+
logger.info("Using original text for search")
|
| 2291 |
|
| 2292 |
+
else:
|
| 2293 |
+
# English or other languages
|
| 2294 |
+
logger.info("Processing as English input")
|
| 2295 |
+
original_language = 'en'
|
| 2296 |
+
needs_translation = False
|
| 2297 |
+
processed_message = user_message
|
| 2298 |
+
|
| 2299 |
+
return processed_message, original_language, needs_translation, transliteration_used, ai_detection_used, confidence
|
| 2300 |
|
| 2301 |
def translate_response_if_needed(response: str, original_language: str) -> str:
|
| 2302 |
"""Translate response back to original language if needed"""
|
|
|
|
| 2473 |
"""Generate response using RAG with memory and multilingual support"""
|
| 2474 |
try:
|
| 2475 |
# Process multilingual input
|
| 2476 |
+
processed_message, original_language, needs_translation, transliteration_used, ai_detection_used, confidence = process_multilingual_input(user_message)
|
| 2477 |
+
logger.info(f"Input processing: original='{user_message}', processed='{processed_message}', lang='{original_language}', transliteration='{transliteration_used}', ai_detection='{ai_detection_used}', confidence='{confidence:.2f}'")
|
| 2478 |
|
| 2479 |
# Get or create memory for this session
|
| 2480 |
memory = get_or_create_memory(session_id)
|
|
|
|
| 2528 |
- Maintain conversation continuity
|
| 2529 |
- Be culturally sensitive when discussing Sri Lankan policies
|
| 2530 |
- When responding in Sinhala, use appropriate formal language for policy discussions
|
|
|
|
|
|
|
|
|
|
| 2531 |
|
| 2532 |
Please provide a helpful response:"""
|
| 2533 |
|
|
|
|
| 2559 |
"sources": sources,
|
| 2560 |
"language_detected": original_language,
|
| 2561 |
"translation_used": needs_translation,
|
| 2562 |
+
"transliteration_used": transliteration_used,
|
| 2563 |
+
"ai_detection_used": ai_detection_used,
|
| 2564 |
+
"detection_confidence": confidence
|
| 2565 |
}
|
| 2566 |
|
| 2567 |
except Exception as e:
|
|
|
|
| 2583 |
"sources": [],
|
| 2584 |
"language_detected": original_language if 'original_language' in locals() else 'en',
|
| 2585 |
"translation_used": False,
|
| 2586 |
+
"transliteration_used": False,
|
| 2587 |
+
"ai_detection_used": False,
|
| 2588 |
+
"detection_confidence": 0.0
|
| 2589 |
}
|
| 2590 |
|
| 2591 |
def clear_session_memory(session_id: str) -> bool:
|
|
|
|
| 2627 |
"user_message": user_message,
|
| 2628 |
"language_detected": result.get("language_detected", "en"),
|
| 2629 |
"translation_used": result.get("translation_used", False),
|
| 2630 |
+
"transliteration_used": result.get("transliteration_used", False),
|
| 2631 |
+
"ai_detection_used": result.get("ai_detection_used", False),
|
| 2632 |
+
"detection_confidence": result.get("detection_confidence", 0.0)
|
| 2633 |
})
|
| 2634 |
|
| 2635 |
except Exception as e:
|
|
|
|
| 2827 |
"error": "Text is required"
|
| 2828 |
}), 400
|
| 2829 |
|
| 2830 |
+
processed_message, original_language, needs_translation, transliteration_used, ai_detection_used, confidence = process_multilingual_input(text)
|
| 2831 |
|
| 2832 |
return jsonify({
|
| 2833 |
"original_text": text,
|
|
|
|
| 2835 |
"language_detected": original_language,
|
| 2836 |
"translation_needed": needs_translation,
|
| 2837 |
"transliteration_used": transliteration_used,
|
| 2838 |
+
"ai_detection_used": ai_detection_used,
|
| 2839 |
+
"detection_confidence": confidence,
|
| 2840 |
"contains_sinhala": detect_sinhala_content(text),
|
| 2841 |
"is_singlish": detect_singlish(text)
|
| 2842 |
})
|