Update app.py
Browse files
app.py
CHANGED
|
@@ -48,7 +48,7 @@ if not PINECONE_API_KEY:
|
|
| 48 |
|
| 49 |
# Initialize Pinecone and embedding model
|
| 50 |
pc = Pinecone(api_key=PINECONE_API_KEY)
|
| 51 |
-
BUDGET_INDEX_NAME = "budget-proposals"
|
| 52 |
embed_model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
|
| 53 |
|
| 54 |
# Initialize LangChain components
|
|
@@ -68,62 +68,45 @@ def get_pinecone_index():
|
|
| 68 |
return None
|
| 69 |
|
| 70 |
def search_budget_proposals(query: str) -> str:
|
| 71 |
-
"""Search budget proposals
|
| 72 |
try:
|
| 73 |
-
|
| 74 |
-
pc_index = get_pinecone_index()
|
| 75 |
-
if not pc_index:
|
| 76 |
-
return "Error: Unable to connect to vector database."
|
| 77 |
-
|
| 78 |
-
# Generate query embedding
|
| 79 |
-
query_embedding = embed_model.encode(query).tolist()
|
| 80 |
|
| 81 |
-
#
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
top_k
|
| 85 |
-
|
| 86 |
-
filter={"source": "budget_proposals"} # Filter for your budget proposals
|
| 87 |
)
|
| 88 |
|
| 89 |
-
if
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
# Build context from search results with improved chunking metadata
|
| 93 |
-
context_parts = []
|
| 94 |
-
seen_files = set() # Avoid duplicate files
|
| 95 |
-
|
| 96 |
-
for match in search_results.matches[:3]: # Limit to top 3 results
|
| 97 |
-
metadata = match.metadata
|
| 98 |
-
file_path = metadata.get("file_path", "")
|
| 99 |
-
category = metadata.get("category", "")
|
| 100 |
-
title = metadata.get("title", "")
|
| 101 |
-
cost = metadata.get("costLKR", "")
|
| 102 |
-
chunk_id = metadata.get("chunk_id", 0)
|
| 103 |
-
quality_score = metadata.get("chunk_quality_score", 0)
|
| 104 |
-
token_count = metadata.get("token_count", 0)
|
| 105 |
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
continue
|
| 109 |
-
seen_files.add(file_path)
|
| 110 |
|
| 111 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 112 |
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
if cost and cost != "No Costing Available":
|
| 118 |
-
context_parts.append(f"💰 Cost: {cost}")
|
| 119 |
-
|
| 120 |
-
# Add quality info for debugging
|
| 121 |
-
context_parts.append(f"📊 Quality: {quality_score:.3f}, Tokens: {token_count}, Chunk: {chunk_id}")
|
| 122 |
-
|
| 123 |
-
if not context_parts:
|
| 124 |
-
return "No relevant budget proposals found in the database."
|
| 125 |
-
|
| 126 |
-
return "\n\n".join(context_parts)
|
| 127 |
|
| 128 |
except Exception as e:
|
| 129 |
logger.error(f"Error searching budget proposals: {e}")
|
|
@@ -206,11 +189,11 @@ def get_available_pdfs() -> List[str]:
|
|
| 206 |
return pdf_files
|
| 207 |
else:
|
| 208 |
# Fallback to known PDFs if directory doesn't exist
|
| 209 |
-
return ['
|
| 210 |
except Exception as e:
|
| 211 |
logger.error(f"Error getting available PDFs: {e}")
|
| 212 |
-
# Fallback to known PDFs
|
| 213 |
-
return ['
|
| 214 |
|
| 215 |
def extract_sources_from_response(response: str) -> List[str]:
|
| 216 |
"""Extract source documents mentioned in the response"""
|
|
@@ -433,37 +416,19 @@ def get_chat_history(session_id: str):
|
|
| 433 |
def chat_health():
|
| 434 |
"""Health check for the enhanced chatbot"""
|
| 435 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 436 |
# Test vector database connection
|
| 437 |
pc_index = get_pinecone_index()
|
| 438 |
-
vector_db_status = "disconnected"
|
| 439 |
-
index_stats = {}
|
| 440 |
-
|
| 441 |
-
if pc_index:
|
| 442 |
-
try:
|
| 443 |
-
# Test actual connection with a quick query
|
| 444 |
-
stats = pc_index.describe_index_stats()
|
| 445 |
-
vector_db_status = "connected"
|
| 446 |
-
index_stats = {
|
| 447 |
-
"total_vectors": stats.total_vector_count,
|
| 448 |
-
"index_name": BUDGET_INDEX_NAME
|
| 449 |
-
}
|
| 450 |
-
except Exception as e:
|
| 451 |
-
vector_db_status = f"error: {str(e)}"
|
| 452 |
-
|
| 453 |
-
# Test LangChain connection
|
| 454 |
-
try:
|
| 455 |
-
test_agent = create_agent("health_check")
|
| 456 |
-
test_response = test_agent.invoke({"input": "Hello"})
|
| 457 |
-
langchain_status = "connected" if test_response else "disconnected"
|
| 458 |
-
except Exception as e:
|
| 459 |
-
langchain_status = f"error: {str(e)}"
|
| 460 |
|
| 461 |
return jsonify({
|
| 462 |
-
"status": "healthy"
|
| 463 |
"message": "Enhanced budget proposals chatbot with RAG is running",
|
| 464 |
-
"langchain_status":
|
| 465 |
"vector_db_status": vector_db_status,
|
| 466 |
-
"index_stats": index_stats,
|
| 467 |
"rag_enabled": True,
|
| 468 |
"active_sessions": len(conversation_memories),
|
| 469 |
"memory_enabled": True
|
|
@@ -558,5 +523,4 @@ def home():
|
|
| 558 |
})
|
| 559 |
|
| 560 |
if __name__ == '__main__':
|
| 561 |
-
app.run(debug=False, host='0.0.0.0', port=7860)
|
| 562 |
-
|
|
|
|
| 48 |
|
| 49 |
# Initialize Pinecone and embedding model
|
| 50 |
pc = Pinecone(api_key=PINECONE_API_KEY)
|
| 51 |
+
BUDGET_INDEX_NAME = "budget-proposals-index"
|
| 52 |
embed_model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
|
| 53 |
|
| 54 |
# Initialize LangChain components
|
|
|
|
| 68 |
return None
|
| 69 |
|
| 70 |
def search_budget_proposals(query: str) -> str:
|
| 71 |
+
"""Search budget proposals using the semantic search API"""
|
| 72 |
try:
|
| 73 |
+
import requests
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
|
| 75 |
+
# Use the deployed semantic search API
|
| 76 |
+
response = requests.post(
|
| 77 |
+
f"https://danulr05-budget-proposals-search-api.hf.space/api/search",
|
| 78 |
+
json={"query": query, "top_k": 5},
|
| 79 |
+
timeout=10
|
|
|
|
| 80 |
)
|
| 81 |
|
| 82 |
+
if response.status_code == 200:
|
| 83 |
+
data = response.json()
|
| 84 |
+
results = data.get("results", [])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 85 |
|
| 86 |
+
if not results:
|
| 87 |
+
return "No relevant budget proposals found in the database."
|
|
|
|
|
|
|
| 88 |
|
| 89 |
+
# Build context from search results
|
| 90 |
+
context_parts = []
|
| 91 |
+
for result in results[:3]: # Limit to top 3 results
|
| 92 |
+
file_path = result.get("file_path", "")
|
| 93 |
+
category = result.get("category", "")
|
| 94 |
+
summary = result.get("summary", "")
|
| 95 |
+
cost = result.get("costLKR", "")
|
| 96 |
+
title = result.get("title", "")
|
| 97 |
+
content = result.get("content", "") # Get the actual content
|
| 98 |
+
|
| 99 |
+
context_parts.append(f"From {file_path} ({category}): {title}")
|
| 100 |
+
if content:
|
| 101 |
+
context_parts.append(f"Content: {content}")
|
| 102 |
+
elif summary:
|
| 103 |
+
context_parts.append(f"Summary: {summary}")
|
| 104 |
+
if cost and cost != "No Costing Available":
|
| 105 |
+
context_parts.append(f"Cost: {cost}")
|
| 106 |
|
| 107 |
+
return "\n\n".join(context_parts)
|
| 108 |
+
else:
|
| 109 |
+
return f"Error accessing semantic search API: {response.status_code}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 110 |
|
| 111 |
except Exception as e:
|
| 112 |
logger.error(f"Error searching budget proposals: {e}")
|
|
|
|
| 189 |
return pdf_files
|
| 190 |
else:
|
| 191 |
# Fallback to known PDFs if directory doesn't exist
|
| 192 |
+
return ['MLB.pdf', 'Cigs.pdf', 'Elec.pdf', 'Audit_EPF.pdf', 'EPF.pdf', 'Discretion.pdf', '1750164001872.pdf']
|
| 193 |
except Exception as e:
|
| 194 |
logger.error(f"Error getting available PDFs: {e}")
|
| 195 |
+
# Fallback to known PDFs
|
| 196 |
+
return ['MLB.pdf', 'Cigs.pdf', 'Elec.pdf', 'Audit_EPF.pdf', 'EPF.pdf', 'Discretion.pdf', '1750164001872.pdf']
|
| 197 |
|
| 198 |
def extract_sources_from_response(response: str) -> List[str]:
|
| 199 |
"""Extract source documents mentioned in the response"""
|
|
|
|
| 416 |
def chat_health():
|
| 417 |
"""Health check for the enhanced chatbot"""
|
| 418 |
try:
|
| 419 |
+
# Test LangChain connection and vector database
|
| 420 |
+
test_agent = create_agent("health_check")
|
| 421 |
+
test_response = test_agent.invoke({"input": "Hello"})
|
| 422 |
+
|
| 423 |
# Test vector database connection
|
| 424 |
pc_index = get_pinecone_index()
|
| 425 |
+
vector_db_status = "connected" if pc_index else "disconnected"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 426 |
|
| 427 |
return jsonify({
|
| 428 |
+
"status": "healthy",
|
| 429 |
"message": "Enhanced budget proposals chatbot with RAG is running",
|
| 430 |
+
"langchain_status": "connected" if test_response else "disconnected",
|
| 431 |
"vector_db_status": vector_db_status,
|
|
|
|
| 432 |
"rag_enabled": True,
|
| 433 |
"active_sessions": len(conversation_memories),
|
| 434 |
"memory_enabled": True
|
|
|
|
| 523 |
})
|
| 524 |
|
| 525 |
if __name__ == '__main__':
|
| 526 |
+
app.run(debug=False, host='0.0.0.0', port=7860)
|
|
|