add clip evaluator on mscoco and flickr8k dataset
Browse files- app.py +77 -0
- clip_eval.py +149 -0
- requirements.txt +6 -0
app.py
ADDED
|
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import evaluate
|
| 3 |
+
|
| 4 |
+
clip_metric = evaluate.load("d-matrix/dmx_clip_eval")
|
| 5 |
+
print("Successfully loaded CLIP evaluation metric")
|
| 6 |
+
|
| 7 |
+
AVAILABLE_MODELS = [
|
| 8 |
+
"openai/clip-vit-base-patch32",
|
| 9 |
+
"openai/clip-vit-large-patch14",
|
| 10 |
+
"openai/clip-vit-base-patch16",
|
| 11 |
+
]
|
| 12 |
+
|
| 13 |
+
AVAILABLE_DATASETS = ["mscoco", "flickr"]
|
| 14 |
+
|
| 15 |
+
with gr.Blocks(title="CLIP Evaluation") as demo:
|
| 16 |
+
gr.Markdown("# CLIP Model Evaluation")
|
| 17 |
+
gr.Markdown(
|
| 18 |
+
"""
|
| 19 |
+
This tool evaluates CLIP models on image-text retrieval tasks using standard datasets.
|
| 20 |
+
"""
|
| 21 |
+
)
|
| 22 |
+
|
| 23 |
+
with gr.Row():
|
| 24 |
+
with gr.Column():
|
| 25 |
+
model_input = gr.Dropdown(
|
| 26 |
+
choices=AVAILABLE_MODELS, value=AVAILABLE_MODELS[0], label="CLIP Model"
|
| 27 |
+
)
|
| 28 |
+
|
| 29 |
+
dataset_input = gr.Dropdown(
|
| 30 |
+
choices=AVAILABLE_DATASETS, value="mscoco", label="Dataset"
|
| 31 |
+
)
|
| 32 |
+
|
| 33 |
+
samples_input = gr.Slider(
|
| 34 |
+
minimum=1, maximum=10, value=1, step=1, label="Number of samples"
|
| 35 |
+
)
|
| 36 |
+
|
| 37 |
+
evaluate_button = gr.Button("Evaluate Model")
|
| 38 |
+
|
| 39 |
+
with gr.Column():
|
| 40 |
+
results_output = gr.Markdown("Results will appear here")
|
| 41 |
+
|
| 42 |
+
def evaluate_clip(model_name, dataset, num_samples, progress=gr.Progress()):
|
| 43 |
+
progress(0, desc="Evaluating CLIP model...")
|
| 44 |
+
|
| 45 |
+
results = clip_metric.compute(
|
| 46 |
+
model_name=[model_name],
|
| 47 |
+
dataset_names=[dataset],
|
| 48 |
+
n_examples=[int(num_samples)],
|
| 49 |
+
)
|
| 50 |
+
|
| 51 |
+
output = f"## CLIP Evaluation Results\n\n"
|
| 52 |
+
output += f"**Model:** {model_name}\n"
|
| 53 |
+
output += f"**Dataset:** {dataset}\n"
|
| 54 |
+
output += f"**Samples:** {num_samples}\n\n"
|
| 55 |
+
|
| 56 |
+
output += "**Image Retrieval (TextβImage):**\n"
|
| 57 |
+
for k in [1, 5, 10]:
|
| 58 |
+
metric_name = f"{dataset}:image_recall@{k}"
|
| 59 |
+
if metric_name in results:
|
| 60 |
+
output += f"* Recall@{k}: {results[metric_name]:.4f}\n"
|
| 61 |
+
|
| 62 |
+
output += "\n**Text Retrieval (ImageβText):**\n"
|
| 63 |
+
for k in [1, 5, 10]:
|
| 64 |
+
metric_name = f"{dataset}:text_recall@{k}"
|
| 65 |
+
if metric_name in results:
|
| 66 |
+
output += f"* Recall@{k}: {results[metric_name]:.4f}\n"
|
| 67 |
+
|
| 68 |
+
return output
|
| 69 |
+
|
| 70 |
+
evaluate_button.click(
|
| 71 |
+
fn=evaluate_clip,
|
| 72 |
+
inputs=[model_input, dataset_input, samples_input],
|
| 73 |
+
outputs=results_output,
|
| 74 |
+
)
|
| 75 |
+
|
| 76 |
+
if __name__ == "__main__":
|
| 77 |
+
demo.launch()
|
clip_eval.py
ADDED
|
@@ -0,0 +1,149 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import evaluate
|
| 2 |
+
from evaluate.utils.file_utils import add_start_docstrings
|
| 3 |
+
import datasets
|
| 4 |
+
import torch
|
| 5 |
+
from transformers import CLIPProcessor, CLIPModel
|
| 6 |
+
from tqdm import tqdm
|
| 7 |
+
|
| 8 |
+
_DESCRIPTION = """
|
| 9 |
+
This metric evaluates CLIP models on image-text retrieval tasks using standard datasets.
|
| 10 |
+
It calculates Recall@K metrics for both text-to-image and image-to-text retrieval.
|
| 11 |
+
"""
|
| 12 |
+
|
| 13 |
+
_KWARGS_DESCRIPTION = """
|
| 14 |
+
Args:
|
| 15 |
+
model_name: Name or path of the CLIP model to evaluate (e.g., "openai/clip-vit-base-patch32")
|
| 16 |
+
dataset_names: List of dataset names to evaluate on (choices: "mscoco", "flickr")
|
| 17 |
+
n_examples: Number of examples to use for evaluation (-1 for all)
|
| 18 |
+
|
| 19 |
+
Returns:
|
| 20 |
+
Dictionary containing Recall@K metrics for each dataset and retrieval direction
|
| 21 |
+
"""
|
| 22 |
+
|
| 23 |
+
_CITATION = """
|
| 24 |
+
@inproceedings{radford2021learning,
|
| 25 |
+
title={Learning transferable visual models from natural language supervision},
|
| 26 |
+
author={Radford, Alec and Kim, Jong Wook and Hallacy, Chris and Ramesh, Aditya and others},
|
| 27 |
+
booktitle={International Conference on Machine Learning},
|
| 28 |
+
year={2021},
|
| 29 |
+
}
|
| 30 |
+
"""
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
@add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
|
| 34 |
+
class DmxClipEval(evaluate.Metric):
|
| 35 |
+
def _info(self):
|
| 36 |
+
return evaluate.MetricInfo(
|
| 37 |
+
module_type="metric",
|
| 38 |
+
description=_DESCRIPTION,
|
| 39 |
+
citation=_CITATION,
|
| 40 |
+
inputs_description=_KWARGS_DESCRIPTION,
|
| 41 |
+
features=[
|
| 42 |
+
datasets.Features(
|
| 43 |
+
{
|
| 44 |
+
"model_name": datasets.Value("string"),
|
| 45 |
+
"dataset_names": datasets.Value("string"),
|
| 46 |
+
"n_examples": datasets.Value("int32"),
|
| 47 |
+
}
|
| 48 |
+
),
|
| 49 |
+
],
|
| 50 |
+
)
|
| 51 |
+
|
| 52 |
+
def clip_dataset_evaluator(
|
| 53 |
+
self, model, device, dataset_name="mscoco", n_examples=-1
|
| 54 |
+
):
|
| 55 |
+
processor = CLIPProcessor.from_pretrained(model.config._name_or_path)
|
| 56 |
+
if dataset_name == "mscoco":
|
| 57 |
+
ds = datasets.load_dataset(
|
| 58 |
+
"clip-benchmark/wds_mscoco_captions", split="test"
|
| 59 |
+
)
|
| 60 |
+
elif dataset_name == "flickr":
|
| 61 |
+
ds = datasets.load_dataset("clip-benchmark/wds_flickr8k", split="test")
|
| 62 |
+
else:
|
| 63 |
+
raise ValueError(f"invalid dataset name : {dataset_name}")
|
| 64 |
+
|
| 65 |
+
if n_examples != -1:
|
| 66 |
+
ds = ds.select(range(min(n_examples, len(ds))))
|
| 67 |
+
|
| 68 |
+
dl = torch.utils.data.DataLoader(torch.arange(len(ds)), batch_size=8)
|
| 69 |
+
all_image_embeds = []
|
| 70 |
+
all_text_embeds = []
|
| 71 |
+
|
| 72 |
+
for indices in tqdm(dl, desc=f"Processing {dataset_name}"):
|
| 73 |
+
batch = ds[indices.tolist()]
|
| 74 |
+
inputs = processor(
|
| 75 |
+
text=batch["txt"],
|
| 76 |
+
images=batch["jpg"],
|
| 77 |
+
return_tensors="pt",
|
| 78 |
+
padding=True,
|
| 79 |
+
)
|
| 80 |
+
inputs["input_ids"] = inputs["input_ids"][:, :77]
|
| 81 |
+
inputs["attention_mask"] = inputs["attention_mask"][:, :77]
|
| 82 |
+
inputs = {k: v.to(device) for k, v in inputs.items()}
|
| 83 |
+
|
| 84 |
+
with torch.no_grad():
|
| 85 |
+
output = model(**inputs)
|
| 86 |
+
|
| 87 |
+
all_image_embeds.append(output.image_embeds.cpu())
|
| 88 |
+
all_text_embeds.append(output.text_embeds.cpu())
|
| 89 |
+
|
| 90 |
+
all_image_embeds = torch.cat(all_image_embeds, dim=0)
|
| 91 |
+
all_text_embeds = torch.cat(all_text_embeds, dim=0)
|
| 92 |
+
text_img_sim = all_text_embeds @ all_image_embeds.t()
|
| 93 |
+
|
| 94 |
+
def get_top_k(sim_mat, k_arr):
|
| 95 |
+
ordered_winners = torch.argsort(sim_mat, dim=-1, descending=True)
|
| 96 |
+
correct_winner_mask = (
|
| 97 |
+
ordered_winners
|
| 98 |
+
== torch.arange(ordered_winners.shape[0])
|
| 99 |
+
.unsqueeze(1)
|
| 100 |
+
.to(ordered_winners.device)
|
| 101 |
+
).long()
|
| 102 |
+
return [
|
| 103 |
+
correct_winner_mask[:, :k].sum(-1).float().mean().item() for k in k_arr
|
| 104 |
+
]
|
| 105 |
+
|
| 106 |
+
k_arr = [1, 5, 10]
|
| 107 |
+
metrics = {
|
| 108 |
+
**{
|
| 109 |
+
f"{dataset_name}:image_recall@{k}": val
|
| 110 |
+
for k, val in zip(k_arr, get_top_k(text_img_sim, k_arr))
|
| 111 |
+
},
|
| 112 |
+
**{
|
| 113 |
+
f"{dataset_name}:text_recall@{k}": val
|
| 114 |
+
for k, val in zip(k_arr, get_top_k(text_img_sim.t(), k_arr))
|
| 115 |
+
},
|
| 116 |
+
}
|
| 117 |
+
return metrics
|
| 118 |
+
|
| 119 |
+
def clip_evaluator(self, model, device, desc, n_examples=-1):
|
| 120 |
+
metrics = {}
|
| 121 |
+
for name in ["mscoco", "flickr"]:
|
| 122 |
+
metrics.update(
|
| 123 |
+
self.clip_dataset_evaluator(model, device, desc, name, n_examples)
|
| 124 |
+
)
|
| 125 |
+
return metrics
|
| 126 |
+
|
| 127 |
+
def _compute(self, model_name, dataset_names, n_examples):
|
| 128 |
+
|
| 129 |
+
actual_model_name = model_name[0]
|
| 130 |
+
actual_dataset_name_str = dataset_names[0]
|
| 131 |
+
actual_n_examples = n_examples[0]
|
| 132 |
+
|
| 133 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 134 |
+
model = CLIPModel.from_pretrained(actual_model_name).to(device)
|
| 135 |
+
|
| 136 |
+
datasets_to_evaluate = [actual_dataset_name_str]
|
| 137 |
+
|
| 138 |
+
metrics = {}
|
| 139 |
+
for ds_name_loop_var in datasets_to_evaluate:
|
| 140 |
+
dataset_metrics = self.clip_dataset_evaluator(
|
| 141 |
+
model=model,
|
| 142 |
+
device=device,
|
| 143 |
+
desc=actual_model_name,
|
| 144 |
+
dataset_name=ds_name_loop_var,
|
| 145 |
+
n_examples=actual_n_examples,
|
| 146 |
+
)
|
| 147 |
+
metrics.update(dataset_metrics)
|
| 148 |
+
|
| 149 |
+
return metrics
|
requirements.txt
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio>=3.50.0
|
| 2 |
+
torch>=2.5.0
|
| 3 |
+
transformers>=4.48.0
|
| 4 |
+
datasets>=2.21.0
|
| 5 |
+
tqdm>=4.65.0
|
| 6 |
+
evaluate>= 0.4.3
|