Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 3 |
+
import torch
|
| 4 |
+
|
| 5 |
+
model_name = "dphn/Dolphin3.0-Llama3.1-8B"
|
| 6 |
+
|
| 7 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 8 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 9 |
+
model_name,
|
| 10 |
+
torch_dtype=torch.float16,
|
| 11 |
+
device_map="auto"
|
| 12 |
+
)
|
| 13 |
+
|
| 14 |
+
def chat(message, history):
|
| 15 |
+
inputs = tokenizer.apply_chat_template(
|
| 16 |
+
history + [{"role": "user", "content": message}],
|
| 17 |
+
return_tensors="pt"
|
| 18 |
+
).to(model.device)
|
| 19 |
+
outputs = model.generate(inputs, max_new_tokens=512)
|
| 20 |
+
reply = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 21 |
+
history.append({"role": "assistant", "content": reply})
|
| 22 |
+
return reply, history
|
| 23 |
+
|
| 24 |
+
gr.ChatInterface(fn=chat, title="Dolphin 3.0 Chat").launch()
|