Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,5 +1,8 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from transformers import
|
|
|
|
|
|
|
|
|
|
| 3 |
from PIL import Image
|
| 4 |
import torch
|
| 5 |
import os
|
|
@@ -17,16 +20,12 @@ def load_model():
|
|
| 17 |
)
|
| 18 |
|
| 19 |
# Load the processor and model using the correct identifier
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
)
|
| 23 |
-
model =
|
| 24 |
-
|
| 25 |
-
)
|
| 26 |
-
|
| 27 |
-
# Move model to GPU if available
|
| 28 |
-
if torch.cuda.is_available():
|
| 29 |
-
model = model.to("cuda")
|
| 30 |
|
| 31 |
return processor, model
|
| 32 |
|
|
@@ -35,10 +34,10 @@ def load_model():
|
|
| 35 |
def process_image_and_text(image, text_input):
|
| 36 |
"""Extract text from image using PaliGemma2."""
|
| 37 |
processor, model = load_model()
|
| 38 |
-
|
| 39 |
# Preprocess the image and text
|
| 40 |
inputs = processor(text=text_input, images=image, return_tensors="pt").to(
|
| 41 |
-
|
| 42 |
)
|
| 43 |
|
| 44 |
# Generate predictions
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from transformers import (
|
| 3 |
+
PaliGemmaProcessor,
|
| 4 |
+
PaliGemmaForConditionalGeneration,
|
| 5 |
+
)
|
| 6 |
from PIL import Image
|
| 7 |
import torch
|
| 8 |
import os
|
|
|
|
| 20 |
)
|
| 21 |
|
| 22 |
# Load the processor and model using the correct identifier
|
| 23 |
+
model_id = "google/paligemma2-28b-pt-896"
|
| 24 |
+
processor = PaliGemmaProcessor.from_pretrained(model_id, use_auth_token=token)
|
| 25 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 26 |
+
model = PaliGemmaForConditionalGeneration.from_pretrained(
|
| 27 |
+
model_id, use_auth_token=token, torch_dtype=torch.bfloat16
|
| 28 |
+
).to(device)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
|
| 30 |
return processor, model
|
| 31 |
|
|
|
|
| 34 |
def process_image_and_text(image, text_input):
|
| 35 |
"""Extract text from image using PaliGemma2."""
|
| 36 |
processor, model = load_model()
|
| 37 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 38 |
# Preprocess the image and text
|
| 39 |
inputs = processor(text=text_input, images=image, return_tensors="pt").to(
|
| 40 |
+
device, dtype=torch.bfloat16
|
| 41 |
)
|
| 42 |
|
| 43 |
# Generate predictions
|