first commit --curriculum callback
Browse files- src/utils/callbacks.py +195 -0
src/utils/callbacks.py
ADDED
|
@@ -0,0 +1,195 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import subprocess
|
| 2 |
+
from typing import List
|
| 3 |
+
|
| 4 |
+
from transformers import TrainerCallback
|
| 5 |
+
from transformers.trainer_callback import TrainerControl, TrainerState
|
| 6 |
+
from transformers.training_args import TrainingArguments
|
| 7 |
+
|
| 8 |
+
class CurriculumLearningCallback(TrainerCallback):
|
| 9 |
+
def __init__(self):
|
| 10 |
+
self.current_stage = "format_stage"
|
| 11 |
+
self.stages = {
|
| 12 |
+
"format_stage": {
|
| 13 |
+
"reward_weights": {"format": 1.0, "accuracy": 0.0, "code_execution": 0.0,
|
| 14 |
+
"length": 0.0, "code_ratio": 0.0, "code_timing": 0.0},
|
| 15 |
+
"beta": 0.1, # Higher KL - stay close to base model format
|
| 16 |
+
"steps": 1000
|
| 17 |
+
},
|
| 18 |
+
"code_execution_stage": {
|
| 19 |
+
"reward_weights": {"format": 0.3, "accuracy": 0.0, "code_execution": 0.7,
|
| 20 |
+
"length": 0.0, "code_ratio": 0.0, "code_timing": 0.0},
|
| 21 |
+
"beta": 0.05, # Medium KL
|
| 22 |
+
"steps": 2000
|
| 23 |
+
},
|
| 24 |
+
"accuracy_stage": {
|
| 25 |
+
"reward_weights": {"format": 0.2, "accuracy": 0.8, "code_execution": 0.0,
|
| 26 |
+
"length": 0.0, "code_ratio": 0.0, "code_timing": 0.0},
|
| 27 |
+
"beta": 0.01, # Very low KL - allow exploration
|
| 28 |
+
"steps": 3000
|
| 29 |
+
},
|
| 30 |
+
"refinement_stage": {
|
| 31 |
+
"reward_weights": {"format": 0.1, "accuracy": 0.6, "code_execution": 0.1,
|
| 32 |
+
"length": 0.1, "code_ratio": 0.05, "code_timing": 0.05},
|
| 33 |
+
"beta": 0.03, # Medium-low KL - stabilize learning
|
| 34 |
+
"steps": 5000
|
| 35 |
+
}
|
| 36 |
+
}
|
| 37 |
+
|
| 38 |
+
self.total_steps = sum(stage_config["steps"] for stage_config in self.stages.values())
|
| 39 |
+
self.stage_transitions = self._calculate_stage_transitions()
|
| 40 |
+
|
| 41 |
+
def _calculate_stage_transitions(self):
|
| 42 |
+
"""Calculate at which step each stage transition occurs."""
|
| 43 |
+
transitions = {}
|
| 44 |
+
current_step = 0
|
| 45 |
+
for stage, config in self.stages.items():
|
| 46 |
+
current_step += config["steps"]
|
| 47 |
+
transitions[stage] = current_step
|
| 48 |
+
return transitions
|
| 49 |
+
|
| 50 |
+
def on_step_end(self, args, state, control, **kwargs):
|
| 51 |
+
"""Update reward weights based on current training stage."""
|
| 52 |
+
trainer = kwargs.get('trainer')
|
| 53 |
+
if trainer is None:
|
| 54 |
+
return
|
| 55 |
+
|
| 56 |
+
# Check if it's time to transition to the next stage
|
| 57 |
+
current_step = state.global_step
|
| 58 |
+
|
| 59 |
+
# Determine current stage
|
| 60 |
+
previous_stage = self.current_stage
|
| 61 |
+
for stage, transition_step in self.stage_transitions.items():
|
| 62 |
+
if current_step <= transition_step:
|
| 63 |
+
self.current_stage = stage
|
| 64 |
+
break
|
| 65 |
+
|
| 66 |
+
# If stage changed, update weights and log the transition
|
| 67 |
+
if previous_stage != self.current_stage:
|
| 68 |
+
print(f"Transitioning from {previous_stage} to {self.current_stage} at step {current_step}")
|
| 69 |
+
|
| 70 |
+
# Apply weights for current stage
|
| 71 |
+
stage_weights = self.stages[self.current_stage]["reward_weights"]
|
| 72 |
+
|
| 73 |
+
# Update trainer's reward weights
|
| 74 |
+
# This assumes the trainer has a reward_weights attribute
|
| 75 |
+
for i, func_name in enumerate(trainer.reward_func_names):
|
| 76 |
+
if func_name in stage_weights:
|
| 77 |
+
trainer.reward_weights[i] = stage_weights[func_name]
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
class CurriculumLearningCallback(TrainerCallback):
|
| 82 |
+
"""A callback to implement curriculum learning stages during training."""
|
| 83 |
+
def __init__(self, debug=False):
|
| 84 |
+
self.debug = debug
|
| 85 |
+
self.current_stage = "format_stage"
|
| 86 |
+
self.stages = {
|
| 87 |
+
"format_stage": {
|
| 88 |
+
"reward_weights": {"format": 1.0, "accuracy": 0.0, "code_execution": 0.0,
|
| 89 |
+
"length": 0.0, "code_ratio": 0.0, "code_timing": 0.0},
|
| 90 |
+
"beta": 0.1, # Higher KL - stay close to base model format
|
| 91 |
+
"steps": 1000
|
| 92 |
+
},
|
| 93 |
+
"code_execution_stage": {
|
| 94 |
+
"reward_weights": {"format": 0.3, "accuracy": 0.0, "code_execution": 0.7,
|
| 95 |
+
"length": 0.0, "code_ratio": 0.0, "code_timing": 0.0},
|
| 96 |
+
"beta": 0.05, # Medium KL
|
| 97 |
+
"steps": 2000
|
| 98 |
+
},
|
| 99 |
+
"accuracy_stage": {
|
| 100 |
+
"reward_weights": {"format": 0.2, "accuracy": 0.8, "code_execution": 0.0,
|
| 101 |
+
"length": 0.0, "code_ratio": 0.0, "code_timing": 0.0},
|
| 102 |
+
"beta": 0.01, # Very low KL - allow exploration
|
| 103 |
+
"steps": 3000
|
| 104 |
+
},
|
| 105 |
+
"refinement_stage": {
|
| 106 |
+
"reward_weights": {"format": 0.1, "accuracy": 0.6, "code_execution": 0.1,
|
| 107 |
+
"length": 0.1, "code_ratio": 0.05, "code_timing": 0.05},
|
| 108 |
+
"beta": 0.03, # Medium-low KL - stabilize learning
|
| 109 |
+
"steps": 5000
|
| 110 |
+
}
|
| 111 |
+
}
|
| 112 |
+
self.total_steps = sum(stage_config["steps"] for stage_config in self.stages.values())
|
| 113 |
+
self.stage_transitions = self._calculate_stage_transitions()
|
| 114 |
+
|
| 115 |
+
print(f"Curriculum learning initialized with {len(self.stages)} stages:")
|
| 116 |
+
for stage, end_step in self.stage_transitions.items():
|
| 117 |
+
print(f" {stage}: ends at step {end_step}")
|
| 118 |
+
|
| 119 |
+
def _calculate_stage_transitions(self):
|
| 120 |
+
"""Calculate at which step each stage transition occurs."""
|
| 121 |
+
transitions = {}
|
| 122 |
+
current_step = 0
|
| 123 |
+
for stage, config in self.stages.items():
|
| 124 |
+
current_step += config["steps"]
|
| 125 |
+
transitions[stage] = current_step
|
| 126 |
+
return transitions
|
| 127 |
+
|
| 128 |
+
def on_train_begin(self, args, state, control, **kwargs):
|
| 129 |
+
"""Initialize reward weights and beta at the start of training."""
|
| 130 |
+
trainer = kwargs.get('trainer')
|
| 131 |
+
if trainer is None:
|
| 132 |
+
return
|
| 133 |
+
|
| 134 |
+
# Set initial weights and beta from first stage
|
| 135 |
+
first_stage = list(self.stages.keys())[0]
|
| 136 |
+
stage_config = self.stages[first_stage]
|
| 137 |
+
|
| 138 |
+
# Update reward weights
|
| 139 |
+
if hasattr(trainer, "reward_weights") and hasattr(trainer, "reward_func_names"):
|
| 140 |
+
for i, func_name in enumerate(trainer.reward_func_names):
|
| 141 |
+
if func_name in stage_config["reward_weights"]:
|
| 142 |
+
trainer.reward_weights[i] = stage_config["reward_weights"][func_name]
|
| 143 |
+
if self.debug:
|
| 144 |
+
print(f"Setting initial weight for {func_name}: {trainer.reward_weights[i]}")
|
| 145 |
+
else:
|
| 146 |
+
print("Warning: Trainer doesn't have reward_weights or reward_func_names attributes")
|
| 147 |
+
|
| 148 |
+
# Update beta (KL coefficient)
|
| 149 |
+
if hasattr(trainer, "beta"):
|
| 150 |
+
trainer.beta = stage_config.get("beta", 0.1)
|
| 151 |
+
if self.debug:
|
| 152 |
+
print(f"Setting initial beta: {trainer.beta}")
|
| 153 |
+
else:
|
| 154 |
+
print("Warning: Trainer doesn't have a beta attribute")
|
| 155 |
+
|
| 156 |
+
def on_step_end(self, args, state, control, **kwargs):
|
| 157 |
+
"""Update reward weights and beta based on current training stage."""
|
| 158 |
+
trainer = kwargs.get('trainer')
|
| 159 |
+
if trainer is None:
|
| 160 |
+
return
|
| 161 |
+
|
| 162 |
+
# Check if it's time to transition to the next stage
|
| 163 |
+
current_step = state.global_step
|
| 164 |
+
|
| 165 |
+
# Determine current stage
|
| 166 |
+
previous_stage = self.current_stage
|
| 167 |
+
for stage, transition_step in sorted(self.stage_transitions.items()):
|
| 168 |
+
if current_step <= transition_step:
|
| 169 |
+
self.current_stage = stage
|
| 170 |
+
break
|
| 171 |
+
|
| 172 |
+
# If stage changed, update weights and log the transition
|
| 173 |
+
if previous_stage != self.current_stage:
|
| 174 |
+
print(f"Transitioning from {previous_stage} to {self.current_stage} at step {current_step}")
|
| 175 |
+
|
| 176 |
+
# Get config for current stage
|
| 177 |
+
stage_config = self.stages[self.current_stage]
|
| 178 |
+
|
| 179 |
+
# Update reward weights
|
| 180 |
+
if hasattr(trainer, "reward_weights") and hasattr(trainer, "reward_func_names"):
|
| 181 |
+
for i, func_name in enumerate(trainer.reward_func_names):
|
| 182 |
+
if func_name in stage_config["reward_weights"]:
|
| 183 |
+
new_weight = stage_config["reward_weights"][func_name]
|
| 184 |
+
if trainer.reward_weights[i] != new_weight:
|
| 185 |
+
trainer.reward_weights[i] = new_weight
|
| 186 |
+
if self.debug:
|
| 187 |
+
print(f"Updated weight for {func_name}: {new_weight}")
|
| 188 |
+
|
| 189 |
+
# Update beta (KL coefficient)
|
| 190 |
+
if hasattr(trainer, "beta"):
|
| 191 |
+
new_beta = stage_config.get("beta", 0.1)
|
| 192 |
+
if trainer.beta != new_beta:
|
| 193 |
+
trainer.beta = new_beta
|
| 194 |
+
if self.debug:
|
| 195 |
+
print(f"Updated beta: {new_beta}")
|