upload
Browse files- app.py +427 -0
- embeddings_50d_temp.npy +3 -0
- word_index_dict_50d_temp.pkl +3 -0
app.py
ADDED
|
@@ -0,0 +1,427 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import numpy as np
|
| 3 |
+
import numpy.linalg as la
|
| 4 |
+
import pickle
|
| 5 |
+
import os
|
| 6 |
+
import gdown
|
| 7 |
+
from sentence_transformers import SentenceTransformer
|
| 8 |
+
import matplotlib.pyplot as plt
|
| 9 |
+
import math
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
# Compute Cosine Similarity
|
| 13 |
+
def cosine_similarity(x, y):
|
| 14 |
+
"""
|
| 15 |
+
Exponentiated cosine similarity
|
| 16 |
+
1. Compute cosine similarity
|
| 17 |
+
2. Exponentiate cosine similarity
|
| 18 |
+
3. Return exponentiated cosine similarity
|
| 19 |
+
(20 pts)
|
| 20 |
+
"""
|
| 21 |
+
##################################
|
| 22 |
+
### TODO: Add code here ##########
|
| 23 |
+
##################################
|
| 24 |
+
# Compute dot product
|
| 25 |
+
dot_product = np.dot(x, y)
|
| 26 |
+
|
| 27 |
+
# Compute magnitudes of the vectors
|
| 28 |
+
magnitude_x = np.linalg.norm(x)
|
| 29 |
+
magnitude_y = np.linalg.norm(y)
|
| 30 |
+
|
| 31 |
+
# Compute cosine similarity
|
| 32 |
+
similarity = dot_product / (magnitude_x * magnitude_y)
|
| 33 |
+
|
| 34 |
+
# Exponentiate cosine similarity
|
| 35 |
+
exponentiated_similarity = np.exp(similarity)
|
| 36 |
+
|
| 37 |
+
return exponentiated_similarity
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
# Function to Load Glove Embeddings
|
| 41 |
+
def load_glove_embeddings(glove_path="Data/embeddings.pkl"):
|
| 42 |
+
with open(glove_path, "rb") as f:
|
| 43 |
+
embeddings_dict = pickle.load(f, encoding="latin1")
|
| 44 |
+
|
| 45 |
+
return embeddings_dict
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
def get_model_id_gdrive(model_type):
|
| 49 |
+
if model_type == "25d":
|
| 50 |
+
word_index_id = "13qMXs3-oB9C6kfSRMwbAtzda9xuAUtt8"
|
| 51 |
+
embeddings_id = "1-RXcfBvWyE-Av3ZHLcyJVsps0RYRRr_2"
|
| 52 |
+
elif model_type == "50d":
|
| 53 |
+
embeddings_id = "1DBaVpJsitQ1qxtUvV1Kz7ThDc3az16kZ"
|
| 54 |
+
word_index_id = "1rB4ksHyHZ9skes-fJHMa2Z8J1Qa7awQ9"
|
| 55 |
+
elif model_type == "100d":
|
| 56 |
+
word_index_id = "1-oWV0LqG3fmrozRZ7WB1jzeTJHRUI3mq"
|
| 57 |
+
embeddings_id = "1SRHfX130_6Znz7zbdfqboKosz-PfNvNp"
|
| 58 |
+
|
| 59 |
+
return word_index_id, embeddings_id
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
def download_glove_embeddings_gdrive(model_type):
|
| 63 |
+
# Get glove embeddings from google drive
|
| 64 |
+
word_index_id, embeddings_id = get_model_id_gdrive(model_type)
|
| 65 |
+
|
| 66 |
+
# Use gdown to get files from google drive
|
| 67 |
+
embeddings_temp = "embeddings_" + str(model_type) + "_temp.npy"
|
| 68 |
+
word_index_temp = "word_index_dict_" + str(model_type) + "_temp.pkl"
|
| 69 |
+
|
| 70 |
+
# Download word_index pickle file
|
| 71 |
+
print("Downloading word index dictionary....\n")
|
| 72 |
+
gdown.download(id=word_index_id, output=word_index_temp, quiet=False)
|
| 73 |
+
|
| 74 |
+
# Download embeddings numpy file
|
| 75 |
+
print("Donwloading embedings...\n\n")
|
| 76 |
+
gdown.download(id=embeddings_id, output=embeddings_temp, quiet=False)
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
# @st.cache_data()
|
| 80 |
+
def load_glove_embeddings_gdrive(model_type):
|
| 81 |
+
word_index_temp = "word_index_dict_" + str(model_type) + "_temp.pkl"
|
| 82 |
+
embeddings_temp = "embeddings_" + str(model_type) + "_temp.npy"
|
| 83 |
+
|
| 84 |
+
# Load word index dictionary
|
| 85 |
+
word_index_dict = pickle.load(open(word_index_temp, "rb"), encoding="latin")
|
| 86 |
+
|
| 87 |
+
# Load embeddings numpy
|
| 88 |
+
embeddings = np.load(embeddings_temp)
|
| 89 |
+
|
| 90 |
+
return word_index_dict, embeddings
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
@st.cache_resource()
|
| 94 |
+
def load_sentence_transformer_model(model_name):
|
| 95 |
+
sentenceTransformer = SentenceTransformer(model_name)
|
| 96 |
+
return sentenceTransformer
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
def get_sentence_transformer_embeddings(sentence, model_name="all-MiniLM-L6-v2"):
|
| 100 |
+
"""
|
| 101 |
+
Get sentence transformer embeddings for a sentence
|
| 102 |
+
"""
|
| 103 |
+
# 384 dimensional embedding
|
| 104 |
+
# Default model: https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
|
| 105 |
+
|
| 106 |
+
sentenceTransformer = load_sentence_transformer_model(model_name)
|
| 107 |
+
|
| 108 |
+
try:
|
| 109 |
+
return sentenceTransformer.encode(sentence)
|
| 110 |
+
except:
|
| 111 |
+
if model_name == "all-MiniLM-L6-v2":
|
| 112 |
+
return np.zeros(384)
|
| 113 |
+
else:
|
| 114 |
+
return np.zeros(512)
|
| 115 |
+
|
| 116 |
+
|
| 117 |
+
def get_glove_embeddings(word, word_index_dict, embeddings, model_type):
|
| 118 |
+
"""
|
| 119 |
+
Get glove embedding for a single word
|
| 120 |
+
"""
|
| 121 |
+
if word.lower() in word_index_dict:
|
| 122 |
+
return embeddings[word_index_dict[word.lower()]]
|
| 123 |
+
else:
|
| 124 |
+
return np.zeros(int(model_type.split("d")[0]))
|
| 125 |
+
|
| 126 |
+
|
| 127 |
+
def averaged_glove_embeddings_gdrive(sentence, word_index_dict, embeddings, model_type=50):
|
| 128 |
+
"""
|
| 129 |
+
Get averaged glove embeddings for a sentence
|
| 130 |
+
1. Split sentence into words
|
| 131 |
+
2. Get embeddings for each word
|
| 132 |
+
3. Add embeddings for each word
|
| 133 |
+
4. Divide by number of words
|
| 134 |
+
5. Return averaged embeddings
|
| 135 |
+
(30 pts)
|
| 136 |
+
"""
|
| 137 |
+
embedding = np.zeros(int(model_type.split("d")[0]))
|
| 138 |
+
##################################
|
| 139 |
+
##### TODO: Add code here ########
|
| 140 |
+
##################################
|
| 141 |
+
words = sentence.split()
|
| 142 |
+
# total_embedding = np.zeros(len(word_index_dict[0]))
|
| 143 |
+
|
| 144 |
+
for word in words:
|
| 145 |
+
if word.lower() in word_index_dict.keys():
|
| 146 |
+
embedding += get_glove_embeddings(word.lower(), word_index_dict, embeddings, model_type)
|
| 147 |
+
|
| 148 |
+
if len(words) > 0:
|
| 149 |
+
averaged_embedding = embedding / len(words)
|
| 150 |
+
else:
|
| 151 |
+
averaged_embedding = embedding
|
| 152 |
+
|
| 153 |
+
return averaged_embedding
|
| 154 |
+
|
| 155 |
+
def get_category_embeddings(embeddings_metadata):
|
| 156 |
+
"""
|
| 157 |
+
Get embeddings for each category
|
| 158 |
+
1. Split categories into words
|
| 159 |
+
2. Get embeddings for each word
|
| 160 |
+
"""
|
| 161 |
+
model_name = embeddings_metadata["model_name"]
|
| 162 |
+
st.session_state["cat_embed_" + model_name] = {}
|
| 163 |
+
for category in st.session_state.categories.split(" "):
|
| 164 |
+
if model_name:
|
| 165 |
+
if not category in st.session_state["cat_embed_" + model_name]:
|
| 166 |
+
st.session_state["cat_embed_" + model_name][category] = get_sentence_transformer_embeddings(category, model_name=model_name)
|
| 167 |
+
else:
|
| 168 |
+
if not category in st.session_state["cat_embed_" + model_name]:
|
| 169 |
+
st.session_state["cat_embed_" + model_name][category] = get_sentence_transformer_embeddings(category)
|
| 170 |
+
|
| 171 |
+
|
| 172 |
+
def update_category_embeddings(embedings_metadata):
|
| 173 |
+
"""
|
| 174 |
+
Update embeddings for each category
|
| 175 |
+
"""
|
| 176 |
+
get_category_embeddings(embeddings_metadata)
|
| 177 |
+
|
| 178 |
+
|
| 179 |
+
def get_sorted_cosine_similarity(_, embeddings_metadata):
|
| 180 |
+
"""
|
| 181 |
+
Get sorted cosine similarity between input sentence and categories
|
| 182 |
+
Steps:
|
| 183 |
+
1. Get embeddings for input sentence
|
| 184 |
+
2. Get embeddings for categories (if not found, update category embeddings)
|
| 185 |
+
3. Compute cosine similarity between input sentence and categories
|
| 186 |
+
4. Sort cosine similarity
|
| 187 |
+
5. Return sorted cosine similarity
|
| 188 |
+
(50 pts)
|
| 189 |
+
"""
|
| 190 |
+
categories = st.session_state.categories.split(" ")
|
| 191 |
+
cosine_sim = {}
|
| 192 |
+
if embeddings_metadata["embedding_model"] == "glove":
|
| 193 |
+
word_index_dict = embeddings_metadata["word_index_dict"]
|
| 194 |
+
embeddings = embeddings_metadata["embeddings"]
|
| 195 |
+
model_type = embeddings_metadata["model_type"]
|
| 196 |
+
|
| 197 |
+
input_embedding = averaged_glove_embeddings_gdrive(st.session_state.text_search,
|
| 198 |
+
word_index_dict,
|
| 199 |
+
embeddings, model_type)
|
| 200 |
+
|
| 201 |
+
##########################################
|
| 202 |
+
## TODO: Get embeddings for categories ###
|
| 203 |
+
##########################################
|
| 204 |
+
|
| 205 |
+
if categories != None:
|
| 206 |
+
# Get and compute embeddings for each category
|
| 207 |
+
for index, category in enumerate(categories):
|
| 208 |
+
# category_embeddings.append(averaged_glove_embeddings_gdrive(category,word_index_dict,embeddings, model_type))
|
| 209 |
+
# if category not in cosine_sim:
|
| 210 |
+
cosine_sim[index] = cosine_similarity(input_embedding, embeddings[index])
|
| 211 |
+
|
| 212 |
+
|
| 213 |
+
else:
|
| 214 |
+
model_name = embeddings_metadata["model_name"]
|
| 215 |
+
if not "cat_embed_" + model_name in st.session_state:
|
| 216 |
+
get_category_embeddings(embeddings_metadata)
|
| 217 |
+
|
| 218 |
+
category_embeddings = st.session_state["cat_embed_" + model_name]
|
| 219 |
+
|
| 220 |
+
print("text_search = ", st.session_state.text_search)
|
| 221 |
+
if model_name:
|
| 222 |
+
input_embedding = get_sentence_transformer_embeddings(st.session_state.text_search, model_name=model_name)
|
| 223 |
+
else:
|
| 224 |
+
input_embedding = get_sentence_transformer_embeddings(st.session_state.text_search)
|
| 225 |
+
for index, category in enumerate(categories):
|
| 226 |
+
##########################################
|
| 227 |
+
# TODO: Compute cosine similarity between input sentence and categories
|
| 228 |
+
# TODO: Update category embeddings if category not found
|
| 229 |
+
##########################################
|
| 230 |
+
category_embedding = category_embeddings[category]
|
| 231 |
+
|
| 232 |
+
cosine_sim[index] = cosine_similarity(input_embedding, category_embedding)
|
| 233 |
+
|
| 234 |
+
# Sort cosine similarities in descending order
|
| 235 |
+
sorted_cosine_sim = sorted(cosine_sim.items(), key=lambda x: x[1], reverse=True)
|
| 236 |
+
|
| 237 |
+
|
| 238 |
+
return sorted_cosine_sim
|
| 239 |
+
|
| 240 |
+
|
| 241 |
+
def plot_piechart(sorted_cosine_scores_items):
|
| 242 |
+
sorted_cosine_scores = np.array([
|
| 243 |
+
sorted_cosine_scores_items[index][1]
|
| 244 |
+
for index in range(len(sorted_cosine_scores_items))
|
| 245 |
+
]
|
| 246 |
+
)
|
| 247 |
+
categories = st.session_state.categories.split(" ")
|
| 248 |
+
categories_sorted = [
|
| 249 |
+
categories[sorted_cosine_scores_items[index][0]]
|
| 250 |
+
for index in range(len(sorted_cosine_scores_items))
|
| 251 |
+
]
|
| 252 |
+
fig, ax = plt.subplots()
|
| 253 |
+
ax.pie(sorted_cosine_scores, labels=categories_sorted, autopct="%1.1f%%")
|
| 254 |
+
st.pyplot(fig) # Figure
|
| 255 |
+
|
| 256 |
+
|
| 257 |
+
def plot_piechart_helper(sorted_cosine_scores_items):
|
| 258 |
+
sorted_cosine_scores = np.array(
|
| 259 |
+
[
|
| 260 |
+
sorted_cosine_scores_items[index][1]
|
| 261 |
+
for index in range(len(sorted_cosine_scores_items))
|
| 262 |
+
]
|
| 263 |
+
)
|
| 264 |
+
categories = st.session_state.categories.split(" ")
|
| 265 |
+
categories_sorted = [categories[sorted_cosine_scores_items[index][0]] for index in range(len(sorted_cosine_scores_items)) ]
|
| 266 |
+
fig, ax = plt.subplots(figsize=(3, 3))
|
| 267 |
+
my_explode = np.zeros(len(categories_sorted))
|
| 268 |
+
my_explode[0] = 0.2
|
| 269 |
+
if len(categories_sorted) == 3:
|
| 270 |
+
my_explode[1] = 0.1 # explode this by 0.2
|
| 271 |
+
elif len(categories_sorted) > 3:
|
| 272 |
+
my_explode[2] = 0.05
|
| 273 |
+
ax.pie(
|
| 274 |
+
sorted_cosine_scores,
|
| 275 |
+
labels=categories_sorted,
|
| 276 |
+
autopct="%1.1f%%",
|
| 277 |
+
explode=my_explode,
|
| 278 |
+
)
|
| 279 |
+
|
| 280 |
+
return fig
|
| 281 |
+
|
| 282 |
+
|
| 283 |
+
def plot_piecharts(sorted_cosine_scores_models):
|
| 284 |
+
scores_list = []
|
| 285 |
+
categories = st.session_state.categories.split(" ")
|
| 286 |
+
index = 0
|
| 287 |
+
for model in sorted_cosine_scores_models:
|
| 288 |
+
scores_list.append(sorted_cosine_scores_models[model])
|
| 289 |
+
# scores_list[index] = np.array([scores_list[index][ind2][1] for ind2 in range(len(scores_list[index]))])
|
| 290 |
+
index += 1
|
| 291 |
+
|
| 292 |
+
if len(sorted_cosine_scores_models) == 2:
|
| 293 |
+
fig, (ax1, ax2) = plt.subplots(2)
|
| 294 |
+
|
| 295 |
+
categories_sorted = [
|
| 296 |
+
categories[scores_list[0][index][0]] for index in range(len(scores_list[0]))
|
| 297 |
+
]
|
| 298 |
+
sorted_scores = np.array(
|
| 299 |
+
[scores_list[0][index][1] for index in range(len(scores_list[0]))]
|
| 300 |
+
)
|
| 301 |
+
ax1.pie(sorted_scores, labels=categories_sorted, autopct="%1.1f%%")
|
| 302 |
+
|
| 303 |
+
categories_sorted = [
|
| 304 |
+
categories[scores_list[1][index][0]] for index in range(len(scores_list[1]))
|
| 305 |
+
]
|
| 306 |
+
sorted_scores = np.array(
|
| 307 |
+
[scores_list[1][index][1] for index in range(len(scores_list[1]))]
|
| 308 |
+
)
|
| 309 |
+
ax2.pie(sorted_scores, labels=categories_sorted, autopct="%1.1f%%")
|
| 310 |
+
|
| 311 |
+
st.pyplot(fig)
|
| 312 |
+
|
| 313 |
+
|
| 314 |
+
def plot_alatirchart(sorted_cosine_scores_models):
|
| 315 |
+
models = list(sorted_cosine_scores_models.keys())
|
| 316 |
+
tabs = st.tabs(models)
|
| 317 |
+
figs = {}
|
| 318 |
+
for model in models:
|
| 319 |
+
figs[model] = plot_piechart_helper(sorted_cosine_scores_models[model])
|
| 320 |
+
|
| 321 |
+
for index in range(len(tabs)):
|
| 322 |
+
with tabs[index]:
|
| 323 |
+
st.pyplot(figs[models[index]])
|
| 324 |
+
|
| 325 |
+
|
| 326 |
+
### Text Search ###
|
| 327 |
+
st.sidebar.title("GloVe Twitter")
|
| 328 |
+
st.sidebar.markdown(
|
| 329 |
+
"""
|
| 330 |
+
GloVe is an unsupervised learning algorithm for obtaining vector representations for words. Pretrained on
|
| 331 |
+
2 billion tweets with vocabulary size of 1.2 million. Download from [Stanford NLP](http://nlp.stanford.edu/data/glove.twitter.27B.zip).
|
| 332 |
+
|
| 333 |
+
Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014. *GloVe: Global Vectors for Word Representation*.
|
| 334 |
+
"""
|
| 335 |
+
)
|
| 336 |
+
|
| 337 |
+
model_type = st.sidebar.selectbox("Choose the model", ("25d", "50d"), index=1)
|
| 338 |
+
|
| 339 |
+
|
| 340 |
+
st.title("Search Based Retrieval Demo")
|
| 341 |
+
st.subheader(
|
| 342 |
+
"Pass in space separated categories you want this search demo to be about."
|
| 343 |
+
)
|
| 344 |
+
# st.selectbox(label="Pick the categories you want this search demo to be about...",
|
| 345 |
+
# options=("Flowers Colors Cars Weather Food", "Chocolate Milk", "Anger Joy Sad Frustration Worry Happiness", "Positive Negative"),
|
| 346 |
+
# key="categories"
|
| 347 |
+
# )
|
| 348 |
+
st.text_input(
|
| 349 |
+
label="Categories", key="categories", value="Flowers Colors Cars Weather Food"
|
| 350 |
+
)
|
| 351 |
+
print(st.session_state["categories"])
|
| 352 |
+
print(type(st.session_state["categories"]))
|
| 353 |
+
# print("Categories = ", categories)
|
| 354 |
+
# st.session_state.categories = categories
|
| 355 |
+
|
| 356 |
+
st.subheader("Pass in an input word or even a sentence")
|
| 357 |
+
text_search = st.text_input(
|
| 358 |
+
label="Input your sentence",
|
| 359 |
+
key="text_search",
|
| 360 |
+
value="Roses are red, trucks are blue, and Seattle is grey right now",
|
| 361 |
+
)
|
| 362 |
+
# st.session_state.text_search = text_search
|
| 363 |
+
|
| 364 |
+
# Download glove embeddings if it doesn't exist
|
| 365 |
+
embeddings_path = "embeddings_" + str(model_type) + "_temp.npy"
|
| 366 |
+
word_index_dict_path = "word_index_dict_" + str(model_type) + "_temp.pkl"
|
| 367 |
+
if not os.path.isfile(embeddings_path) or not os.path.isfile(word_index_dict_path):
|
| 368 |
+
print("Model type = ", model_type)
|
| 369 |
+
glove_path = "Data/glove_" + str(model_type) + ".pkl"
|
| 370 |
+
print("glove_path = ", glove_path)
|
| 371 |
+
|
| 372 |
+
# Download embeddings from google drive
|
| 373 |
+
with st.spinner("Downloading glove embeddings..."):
|
| 374 |
+
download_glove_embeddings_gdrive(model_type)
|
| 375 |
+
|
| 376 |
+
|
| 377 |
+
# Load glove embeddings
|
| 378 |
+
word_index_dict, embeddings = load_glove_embeddings_gdrive(model_type)
|
| 379 |
+
|
| 380 |
+
|
| 381 |
+
# Find closest word to an input word
|
| 382 |
+
if st.session_state.text_search:
|
| 383 |
+
# Glove embeddings
|
| 384 |
+
print("Glove Embedding")
|
| 385 |
+
embeddings_metadata = {
|
| 386 |
+
"embedding_model": "glove",
|
| 387 |
+
"word_index_dict": word_index_dict,
|
| 388 |
+
"embeddings": embeddings,
|
| 389 |
+
"model_type": model_type,
|
| 390 |
+
}
|
| 391 |
+
with st.spinner("Obtaining Cosine similarity for Glove..."):
|
| 392 |
+
sorted_cosine_sim_glove = get_sorted_cosine_similarity(
|
| 393 |
+
st.session_state.text_search, embeddings_metadata
|
| 394 |
+
)
|
| 395 |
+
|
| 396 |
+
# Sentence transformer embeddings
|
| 397 |
+
print("Sentence Transformer Embedding")
|
| 398 |
+
embeddings_metadata = {"embedding_model": "transformers", "model_name": ""}
|
| 399 |
+
with st.spinner("Obtaining Cosine similarity for 384d sentence transformer..."):
|
| 400 |
+
sorted_cosine_sim_transformer = get_sorted_cosine_similarity(
|
| 401 |
+
st.session_state.text_search, embeddings_metadata
|
| 402 |
+
)
|
| 403 |
+
|
| 404 |
+
# Results and Plot Pie Chart for Glove
|
| 405 |
+
print("Categories are: ", st.session_state.categories)
|
| 406 |
+
st.subheader(
|
| 407 |
+
"Closest word I have between: "
|
| 408 |
+
+ st.session_state.categories
|
| 409 |
+
+ " as per different Embeddings"
|
| 410 |
+
)
|
| 411 |
+
|
| 412 |
+
print(sorted_cosine_sim_glove)
|
| 413 |
+
print(sorted_cosine_sim_transformer)
|
| 414 |
+
# print(sorted_distilbert)
|
| 415 |
+
# Altair Chart for all models
|
| 416 |
+
plot_alatirchart(
|
| 417 |
+
{
|
| 418 |
+
"glove_" + str(model_type): sorted_cosine_sim_glove,
|
| 419 |
+
"sentence_transformer_384": sorted_cosine_sim_transformer,
|
| 420 |
+
}
|
| 421 |
+
)
|
| 422 |
+
# "distilbert_512": sorted_distilbert})
|
| 423 |
+
|
| 424 |
+
st.write("")
|
| 425 |
+
st.write(
|
| 426 |
+
"Demo developed by [Dr. Karthik Mohan](https://www.linkedin.com/in/karthik-mohan-72a4b323/)"
|
| 427 |
+
)
|
embeddings_50d_temp.npy
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e74f88cde3ff2e36c815d13955c67983cf6f81829d2582cb6789c10786e5ef66
|
| 3 |
+
size 477405680
|
word_index_dict_50d_temp.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:674af352f703098ef122f6a8db7c5e08c5081829d49daea32e5aeac1fe582900
|
| 3 |
+
size 60284151
|