File size: 8,229 Bytes
6fda968
233b170
 
 
 
 
bf35ece
233b170
78ec24e
233b170
bf35ece
233b170
 
 
6c8b7ac
 
78ec24e
 
 
 
 
 
 
 
 
6c8b7ac
bf35ece
 
 
 
 
 
 
 
78ec24e
bf35ece
78ec24e
bf35ece
 
 
78ec24e
6c8b7ac
 
 
 
 
 
 
 
 
 
 
 
78ec24e
6fda968
 
233b170
78ec24e
6fda968
78ec24e
6c8b7ac
78ec24e
 
 
233b170
78ec24e
 
 
 
6c8b7ac
78ec24e
 
 
6fda968
233b170
78ec24e
233b170
78ec24e
6fda968
78ec24e
 
 
 
bf35ece
6fda968
233b170
78ec24e
233b170
78ec24e
 
 
 
 
 
6fda968
78ec24e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
233b170
6c8b7ac
 
78ec24e
4d37e51
78ec24e
6c8b7ac
 
 
 
 
78ec24e
4d37e51
6c8b7ac
 
 
 
 
78ec24e
4d37e51
6c8b7ac
 
 
 
 
4d37e51
6c8b7ac
 
 
 
 
 
78ec24e
6c8b7ac
 
78ec24e
6c8b7ac
4d37e51
6c8b7ac
 
4d37e51
78ec24e
 
4d37e51
6c8b7ac
78ec24e
 
4d37e51
6c8b7ac
 
6fda968
6c8b7ac
78ec24e
 
6c8b7ac
 
78ec24e
6c8b7ac
78ec24e
6c8b7ac
78ec24e
6c8b7ac
78ec24e
6c8b7ac
78ec24e
6c8b7ac
78ec24e
6c8b7ac
78ec24e
 
 
 
6fda968
78ec24e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6fda968
78ec24e
 
 
 
 
 
 
 
 
6fda968
 
78ec24e
 
 
 
 
6fda968
 
 
78ec24e
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
import streamlit as st
import json
import os
import time
from io import BytesIO
from PIL import Image
from pathlib import Path

from geo_bot import GeoBot, AGENT_PROMPT_TEMPLATE
from benchmark import MapGuesserBenchmark
from config import MODELS_CONFIG, get_data_paths, SUCCESS_THRESHOLD_KM
from langchain_openai import ChatOpenAI
from langchain_anthropic import ChatAnthropic
from langchain_google_genai import ChatGoogleGenerativeAI
from hf_chat import HuggingFaceChat

# Simple API key setup
if "OPENAI_API_KEY" in st.secrets:
    os.environ["OPENAI_API_KEY"] = st.secrets["OPENAI_API_KEY"]
if "ANTHROPIC_API_KEY" in st.secrets:
    os.environ["ANTHROPIC_API_KEY"] = st.secrets["ANTHROPIC_API_KEY"]
if "GOOGLE_API_KEY" in st.secrets:
    os.environ["GOOGLE_API_KEY"] = st.secrets["GOOGLE_API_KEY"]
if "HF_TOKEN" in st.secrets:
    os.environ["HF_TOKEN"] = st.secrets["HF_TOKEN"]


def get_available_datasets():
    datasets_dir = Path("datasets")
    if not datasets_dir.exists():
        return ["default"]
    datasets = []
    for dataset_dir in datasets_dir.iterdir():
        if dataset_dir.is_dir():
            data_paths = get_data_paths(dataset_dir.name)
            if os.path.exists(data_paths["golden_labels"]):
                datasets.append(dataset_dir.name)
    return datasets if datasets else ["default"]


def get_model_class(class_name):
    if class_name == "ChatOpenAI":
        return ChatOpenAI
    elif class_name == "ChatAnthropic":
        return ChatAnthropic
    elif class_name == "ChatGoogleGenerativeAI":
        return ChatGoogleGenerativeAI
    elif class_name == "HuggingFaceChat":
        return HuggingFaceChat
    else:
        raise ValueError(f"Unknown model class: {class_name}")


# UI Setup
st.set_page_config(page_title="MapCrunch AI Agent", layout="wide")
st.title("πŸ—ΊοΈ MapCrunch AI Agent")

# Sidebar
with st.sidebar:
    st.header("βš™οΈ Configuration")

    dataset_choice = st.selectbox("Dataset", get_available_datasets())
    model_choice = st.selectbox("Model", list(MODELS_CONFIG.keys()))
    steps_per_sample = st.slider("Max Steps", 3, 20, 10)

    # Load dataset
    data_paths = get_data_paths(dataset_choice)
    with open(data_paths["golden_labels"], "r") as f:
        golden_labels = json.load(f).get("samples", [])

    st.info(f"Dataset has {len(golden_labels)} samples")
    num_samples = st.slider(
        "Samples to Test", 1, len(golden_labels), min(3, len(golden_labels))
    )

    start_button = st.button("πŸš€ Start", type="primary")

# Main Logic
if start_button:
    test_samples = golden_labels[:num_samples]
    config = MODELS_CONFIG[model_choice]
    model_class = get_model_class(config["class"])

    benchmark_helper = MapGuesserBenchmark(dataset_name=dataset_choice)
    all_results = []

    progress_bar = st.progress(0)

    with GeoBot(
        model=model_class, model_name=config["model_name"], headless=True
    ) as bot:
        for i, sample in enumerate(test_samples):
            st.divider()
            st.header(f"Sample {i + 1}/{num_samples}")

            bot.controller.load_location_from_data(sample)
            bot.controller.setup_clean_environment()

            col1, col2 = st.columns([2, 3])

            with col1:
                image_placeholder = st.empty()
            with col2:
                reasoning_placeholder = st.empty()
                action_placeholder = st.empty()

            history = []
            final_guess = None

            for step in range(steps_per_sample):
                step_num = step + 1
                reasoning_placeholder.info(f"πŸ€” Step {step_num}/{steps_per_sample}")

                bot.controller.label_arrows_on_screen()
                screenshot_bytes = bot.controller.take_street_view_screenshot()
                image_placeholder.image(screenshot_bytes, caption=f"Step {step_num}")

                current_step = {
                    "image_b64": bot.pil_to_base64(
                        Image.open(BytesIO(screenshot_bytes))
                    ),
                    "action": "N/A",
                }
                history.append(current_step)

                available_actions = bot.controller.get_available_actions()
                history_text = "\n".join(
                    [f"Step {j + 1}: {h['action']}" for j, h in enumerate(history[:-1])]
                )
                if not history_text:
                    history_text = "First step."

                prompt = AGENT_PROMPT_TEMPLATE.format(
                    remaining_steps=steps_per_sample - step,
                    history_text=history_text,
                    available_actions=json.dumps(available_actions),
                )

                message = bot._create_message_with_history(
                    prompt, [h["image_b64"] for h in history]
                )
                response = bot.model.invoke(message)
                decision = bot._parse_agent_response(response)

                if not decision:
                    decision = {
                        "action_details": {"action": "PAN_RIGHT"},
                        "reasoning": "Fallback",
                    }

                action = decision.get("action_details", {}).get("action")
                history[-1]["action"] = action

                reasoning_placeholder.success("βœ… Decision Made")
                action_placeholder.success(f"🎯 Action: `{action}`")

                with action_placeholder:
                    with st.expander("Reasoning"):
                        st.write(decision.get("reasoning", "N/A"))

                if step_num == steps_per_sample and action != "GUESS":
                    action = "GUESS"

                if action == "GUESS":
                    lat = decision.get("action_details", {}).get("lat")
                    lon = decision.get("action_details", {}).get("lon")
                    if lat is not None and lon is not None:
                        final_guess = (lat, lon)
                    break
                elif action == "MOVE_FORWARD":
                    bot.controller.move("forward")
                elif action == "MOVE_BACKWARD":
                    bot.controller.move("backward")
                elif action == "PAN_LEFT":
                    bot.controller.pan_view("left")
                elif action == "PAN_RIGHT":
                    bot.controller.pan_view("right")

                time.sleep(1)

            # Results
            true_coords = {"lat": sample.get("lat"), "lng": sample.get("lng")}
            distance_km = None
            is_success = False

            if final_guess:
                distance_km = benchmark_helper.calculate_distance(
                    true_coords, final_guess
                )
                if distance_km is not None:
                    is_success = distance_km <= SUCCESS_THRESHOLD_KM

                st.subheader("🎯 Result")
                col1, col2, col3 = st.columns(3)
                col1.metric("Guess", f"{final_guess[0]:.3f}, {final_guess[1]:.3f}")
                col2.metric(
                    "Truth", f"{true_coords['lat']:.3f}, {true_coords['lng']:.3f}"
                )
                col3.metric(
                    "Distance",
                    f"{distance_km:.1f} km",
                    delta="Success" if is_success else "Failed",
                )

            all_results.append(
                {
                    "sample_id": sample.get("id"),
                    "model": model_choice,
                    "true_coordinates": true_coords,
                    "predicted_coordinates": final_guess,
                    "distance_km": distance_km,
                    "success": is_success,
                }
            )

            progress_bar.progress((i + 1) / num_samples)

    # Summary
    st.divider()
    st.header("🏁 Summary")
    summary = benchmark_helper.generate_summary(all_results)
    if summary and model_choice in summary:
        stats = summary[model_choice]
        col1, col2 = st.columns(2)
        col1.metric("Success Rate", f"{stats.get('success_rate', 0) * 100:.1f}%")
        col2.metric("Avg Distance", f"{stats.get('average_distance_km', 0):.1f} km")
        st.dataframe(all_results)