Spaces:
Running
Running
File size: 11,749 Bytes
ee1b999 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 |
import gradio as gr
from gradio.events import SelectData
import pandas as pd
import plotly.graph_objects as go
import os
from agenteval.leaderboard.view import LeaderboardViewer
from huggingface_hub import HfApi
from leaderboard_transformer import DataTransformer, transform_raw_dataframe, create_pretty_tag_map, INFORMAL_TO_FORMAL_NAME_MAP, _plot_scatter_plotly, format_cost_column, format_score_column
from content import (
SCATTER_DISCLAIMER,
format_error,
format_log,
format_warning,
hf_uri_to_web_url,
hyperlink,
)
# --- Constants and Configuration ---
LOCAL_DEBUG = not (os.environ.get("system") == "spaces")
CONFIG_NAME = "1.0.0-dev1" # This corresponds to 'config' in LeaderboardViewer
IS_INTERNAL = os.environ.get("IS_INTERNAL", "false").lower() == "true"
OWNER = "allenai"
PROJECT_NAME = "asta-bench" + ("-internal" if IS_INTERNAL else "")
SUBMISSION_DATASET = f"{OWNER}/{PROJECT_NAME}-submissions"
SUBMISSION_DATASET_PUBLIC = f"{OWNER}/{PROJECT_NAME}-submissions-public"
CONTACT_DATASET = f"{OWNER}/{PROJECT_NAME}-contact-info"
RESULTS_DATASET = f"{OWNER}/{PROJECT_NAME}-results" # This is the repo_id for LeaderboardViewer
LEADERBOARD_PATH = f"{OWNER}/{PROJECT_NAME}-leaderboard"
if LOCAL_DEBUG:
DATA_DIR = os.path.join(os.path.dirname(__file__), "data", CONFIG_NAME)
else:
DATA_DIR = "/home/user/data/" + CONFIG_NAME
EXTRACTED_DATA_DIR = os.path.join(DATA_DIR, "extracted")
api = HfApi()
MAX_UPLOAD_BYTES = 100 * 1024**2
AGENTEVAL_MANIFEST_NAME = "agenteval.json"
os.makedirs(EXTRACTED_DATA_DIR, exist_ok=True)
# --- Global State for Viewers (simple caching) ---
CACHED_VIEWERS = {}
CACHED_TAG_MAPS = {}
# --- New Helper Class to Solve the Type Mismatch Bug ---
class DummyViewer:
"""A mock viewer to be cached on error. It has a ._load() method
to ensure it behaves like the real LeaderboardViewer."""
def __init__(self, error_df):
self._error_df = error_df
def _load(self):
# The _load method returns the error DataFrame and an empty tag map
return self._error_df, {}
def get_leaderboard_viewer_instance(split: str):
"""
Fetches the LeaderboardViewer for a split, using a cache to avoid
re-downloading data. On error, returns a stable DummyViewer object.
"""
global CACHED_VIEWERS, CACHED_TAG_MAPS
if split in CACHED_VIEWERS:
# Cache hit: return the cached viewer and tag map
return CACHED_VIEWERS[split], CACHED_TAG_MAPS.get(split, {"Overall": []})
# --- Cache miss: try to load data from the source ---
try:
print(f"Using Hugging Face dataset for split '{split}': {RESULTS_DATASET}/{CONFIG_NAME}")
viewer = LeaderboardViewer(
repo_id=RESULTS_DATASET,
config=CONFIG_NAME,
split=split,
is_internal=IS_INTERNAL
)
# Simplify tag map creation
pretty_tag_map = create_pretty_tag_map(viewer.tag_map, INFORMAL_TO_FORMAL_NAME_MAP)
# Cache the results for next time
CACHED_VIEWERS[split] = viewer
CACHED_TAG_MAPS[split] = pretty_tag_map # Cache the pretty map directly
return viewer, pretty_tag_map
except Exception as e:
# On ANY error, create a consistent error message and cache a DummyViewer
error_message = f"Error loading data for split '{split}': {e}"
print(format_error(error_message))
dummy_df = pd.DataFrame({"Message": [error_message]})
dummy_viewer = DummyViewer(dummy_df)
dummy_tag_map = {"Overall": []}
# Cache the dummy objects so we don't try to fetch again on this run
CACHED_VIEWERS[split] = dummy_viewer
CACHED_TAG_MAPS[split] = dummy_tag_map
return dummy_viewer, dummy_tag_map
def create_leaderboard_display(
full_df: pd.DataFrame,
tag_map: dict,
category_name: str,
split_name: str
):
"""
This UI factory takes pre-loaded data and renders the main DataFrame and Plot
for a given category (e.g., "Overall" or "Literature Understanding").
"""
# 1. Instantiate the transformer and get the specific view for this category.
# The function no longer loads data itself; it filters the data it receives.
transformer = DataTransformer(full_df, tag_map)
df_view, plots_dict = transformer.view(tag=category_name, use_plotly=True)
# format cost columns
for col in df_view.columns:
if "Cost" in col:
df_view = format_cost_column(df_view, col)
# 2. Fill NaN scores with 0
for col in df_view.columns:
if "Score" in col:
df_view = format_score_column(df_view, col)
scatter_plot = plots_dict.get('scatter_plot', go.Figure())
# 2. Define the UI components with the filtered data.
df_headers = df_view.columns.tolist()
df_datatypes = ["markdown" if col == "Logs" or "Cost" in col or "Score" in col else "str" for col in df_headers]
dataframe_component = gr.DataFrame(
headers=df_headers,
value=df_view,
datatype=df_datatypes,
interactive=False,
wrap=True,
column_widths=[100, 100, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 75, 75, 50, 50]
)
plot_component = gr.Plot(
value=scatter_plot,
label=f"Score vs. Cost ({category_name})"
)
gr.HTML(SCATTER_DISCLAIMER, elem_id="scatter-disclaimer")
# Return the components so they can be referenced elsewhere.
return dataframe_component, plot_component
def get_full_leaderboard_data(split: str) -> tuple[pd.DataFrame, dict]:
"""
Loads and transforms the complete dataset for a given split.
This function handles caching and returns the final "pretty" DataFrame and tag map.
"""
# This reuses your existing robust caching logic
viewer_or_data, raw_tag_map = get_leaderboard_viewer_instance(split)
if isinstance(viewer_or_data, (LeaderboardViewer, DummyViewer)):
raw_df, _ = viewer_or_data._load()
if raw_df.empty:
return pd.DataFrame(), {}
pretty_df = transform_raw_dataframe(raw_df)
pretty_tag_map = create_pretty_tag_map(raw_tag_map, INFORMAL_TO_FORMAL_NAME_MAP)
if "Logs" in pretty_df.columns:
def format_log_entry_to_html(raw_uri):
if pd.isna(raw_uri) or raw_uri == "": return ""
web_url = hf_uri_to_web_url(str(raw_uri))
return hyperlink(web_url, "🔗") if web_url else ""
# Apply the function to the "Logs" column
pretty_df["Logs"] = pretty_df["Logs"].apply(format_log_entry_to_html)
return pretty_df, pretty_tag_map
# Fallback for unexpected types
return pd.DataFrame(), {}
# --- Detailed Benchmark Display ---
def create_benchmark_details_display(
full_df: pd.DataFrame,
tag_map: dict,
category_name: str
):
"""
Generates a detailed breakdown for each benchmark within a given category.
For each benchmark, it creates a title, a filtered table, and a scatter plot.
Args:
full_df (pd.DataFrame): The complete, "pretty" dataframe for the entire split.
tag_map (dict): The "pretty" tag map to find the list of benchmarks.
category_name (str): The main category to display details for (e.g., "Literature Understanding").
"""
# 1. Get the list of benchmarks for the selected category
benchmark_names = tag_map.get(category_name, [])
if not benchmark_names:
gr.Markdown(f"No detailed benchmarks found for the category: {category_name}")
return
gr.Markdown("---")
gr.Markdown("## Detailed Benchmark Results")
# 2. Loop through each benchmark and create its UI components
for benchmark_name in benchmark_names:
with gr.Blocks():
gr.Markdown(f"### {benchmark_name}")
# 3. Prepare the data for this specific benchmark's table and plot
benchmark_score_col = f"{benchmark_name} Score"
benchmark_cost_col = f"{benchmark_name} Cost"
# Define the columns needed for the detailed table
table_cols = ['Agent', 'Submitter', 'Date', benchmark_score_col, benchmark_cost_col,'Logs']
# Filter to only columns that actually exist in the full dataframe
existing_table_cols = [col for col in table_cols if col in full_df.columns]
if benchmark_score_col not in existing_table_cols:
gr.Markdown(f"Score data for {benchmark_name} not available.")
continue # Skip to the next benchmark if score is missing
# Create a specific DataFrame for the table view
benchmark_table_df = full_df[existing_table_cols].copy()
# Calculated and add "Benchmark Attempted" column
def check_benchmark_status(row):
has_score = pd.notna(row.get(benchmark_score_col))
has_cost = pd.notna(row.get(benchmark_cost_col))
if has_score and has_cost:
return "✅"
if has_score or has_cost:
return "⚠️"
return "🚫 "
# Apply the function to create the new column
benchmark_table_df['Attempted Benchmark'] = benchmark_table_df.apply(check_benchmark_status, axis=1)
# Sort the DataFrame
if benchmark_score_col in benchmark_table_df.columns:
benchmark_table_df = benchmark_table_df.sort_values(
by=benchmark_score_col, ascending=False, na_position='last'
)
# 1. Format the cost and score columns
benchmark_table_df = format_cost_column(benchmark_table_df, benchmark_cost_col)
benchmark_table_df = format_score_column(benchmark_table_df, benchmark_score_col)
desired_cols_in_order = [
'Agent',
'Submitter',
'Attempted Benchmark',
benchmark_score_col,
benchmark_cost_col,
'Openness',
'Degree of Control',
'Date',
'Logs'
]
for col in desired_cols_in_order:
if col not in benchmark_table_df.columns:
benchmark_table_df[col] = pd.NA # Add as an empty column
benchmark_table_df = benchmark_table_df[desired_cols_in_order]
# Rename columns for a cleaner table display, as requested
benchmark_table_df.rename(columns={
benchmark_score_col: 'Score',
benchmark_cost_col: 'Cost'
}, inplace=True)
# Ensure the 'Logs' column is formatted correctly
table_headers = benchmark_table_df.columns.tolist()
# If the column is 'Logs', render as markdown; otherwise, as a string.
df_datatypes = [
"markdown" if col in ["Logs", "Cost", "Score"] else "str"
for col in table_headers
]
# Create the Gradio component, now with the correct datatypes
gr.DataFrame(
value=benchmark_table_df,
datatype=df_datatypes,
interactive=False,
wrap=True,
)
# Create the scatter plot using the full data for context, but plotting benchmark metrics
# This shows all agents on the same axis for better comparison.
benchmark_plot = _plot_scatter_plotly(
data=full_df,
x=benchmark_cost_col,
y=benchmark_score_col,
agent_col="Agent"
)
gr.Plot(value=benchmark_plot)
gr.HTML(SCATTER_DISCLAIMER, elem_id="scatter-disclaimer")
|