Update app.py
Browse files
app.py
CHANGED
|
@@ -6,91 +6,57 @@ from transformers import AutoProcessor
|
|
| 6 |
from PIL import Image
|
| 7 |
import gradio as gr
|
| 8 |
|
| 9 |
-
#
|
| 10 |
model_name = "unsloth/Llama-3.2-11B-Vision-Instruct"
|
| 11 |
-
|
| 12 |
-
# LoRA adapter repo
|
| 13 |
lora_repo = "alinasdkey/unsloth-pret-lora"
|
| 14 |
|
| 15 |
-
#
|
| 16 |
model, processor = FastVisionModel.from_pretrained(
|
| 17 |
-
model_name
|
| 18 |
-
device_map
|
| 19 |
-
load_in_4bit
|
| 20 |
-
load_in_8bit
|
| 21 |
-
# remove torch_dtype entirely
|
| 22 |
)
|
| 23 |
|
| 24 |
-
#
|
| 25 |
-
model = PeftModel.from_pretrained(
|
| 26 |
-
model,
|
| 27 |
-
model_id = lora_repo,
|
| 28 |
-
)
|
| 29 |
|
| 30 |
-
#
|
| 31 |
FastVisionModel.for_inference(model)
|
| 32 |
|
| 33 |
-
#Inference function
|
| 34 |
def describe_image(image, instruction):
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
messages = [
|
| 40 |
-
{
|
| 41 |
-
"role": "user",
|
| 42 |
-
"content": [
|
| 43 |
-
{"type": "image"},
|
| 44 |
-
{"type": "text", "text": prompt}
|
| 45 |
-
]
|
| 46 |
-
}
|
| 47 |
-
]
|
| 48 |
-
|
| 49 |
-
prompt_text = processor.apply_chat_template(messages, add_generation_prompt=True)
|
| 50 |
-
|
| 51 |
-
# Step 2: Tokenize the prompt text
|
| 52 |
-
input_ids = processor.tokenizer(prompt_text, return_tensors="pt").input_ids.to(model.device)
|
| 53 |
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
pixel_values = image_inputs["pixel_values"]
|
| 57 |
-
aspect_ratio_ids = image_inputs["aspect_ratio_ids"]
|
| 58 |
|
| 59 |
-
|
| 60 |
-
outputs = model.generate(
|
| 61 |
-
input_ids=input_ids,
|
| 62 |
-
pixel_values=pixel_values,
|
| 63 |
-
aspect_ratio_ids=aspect_ratio_ids,
|
| 64 |
-
max_new_tokens=256,
|
| 65 |
-
do_sample=False,
|
| 66 |
-
temperature=0.2,
|
| 67 |
-
top_p=0.95
|
| 68 |
-
)
|
| 69 |
-
|
| 70 |
-
# Step 5: Decode
|
| 71 |
-
return processor.tokenizer.decode(outputs[0], skip_special_tokens=True).strip()
|
| 72 |
-
|
| 73 |
-
except Exception as e:
|
| 74 |
-
import traceback
|
| 75 |
-
return traceback.format_exc()
|
| 76 |
-
|
| 77 |
-
# Tokenize + image encode
|
| 78 |
-
image_inputs = processor(images=image, return_tensors="pt").to(model.device)
|
| 79 |
input_ids = processor.tokenizer(prompt, return_tensors="pt").input_ids.to(model.device)
|
| 80 |
|
| 81 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
outputs = model.generate(
|
| 83 |
input_ids=input_ids,
|
| 84 |
-
|
|
|
|
|
|
|
| 85 |
max_new_tokens=256,
|
| 86 |
do_sample=False,
|
| 87 |
temperature=0.2,
|
| 88 |
top_p=0.95,
|
| 89 |
)
|
| 90 |
|
|
|
|
| 91 |
return processor.tokenizer.decode(outputs[0], skip_special_tokens=True).strip()
|
| 92 |
|
| 93 |
-
#Gradio Interface
|
| 94 |
gr.Interface(
|
| 95 |
fn=describe_image,
|
| 96 |
inputs=[
|
|
@@ -98,6 +64,7 @@ gr.Interface(
|
|
| 98 |
gr.Textbox(label="Instruction (e.g. Summarize this graph)")
|
| 99 |
],
|
| 100 |
outputs="text",
|
| 101 |
-
title="
|
| 102 |
description="Upload a graph and get insightful analysis!"
|
| 103 |
).launch()
|
|
|
|
|
|
| 6 |
from PIL import Image
|
| 7 |
import gradio as gr
|
| 8 |
|
| 9 |
+
# Load base LLaMA vision model
|
| 10 |
model_name = "unsloth/Llama-3.2-11B-Vision-Instruct"
|
|
|
|
|
|
|
| 11 |
lora_repo = "alinasdkey/unsloth-pret-lora"
|
| 12 |
|
| 13 |
+
# Load base model and processor
|
| 14 |
model, processor = FastVisionModel.from_pretrained(
|
| 15 |
+
model_name=model_name,
|
| 16 |
+
device_map="auto",
|
| 17 |
+
load_in_4bit=False,
|
| 18 |
+
load_in_8bit=True,
|
|
|
|
| 19 |
)
|
| 20 |
|
| 21 |
+
# Apply LoRA adapter
|
| 22 |
+
model = PeftModel.from_pretrained(model, model_id=lora_repo)
|
|
|
|
|
|
|
|
|
|
| 23 |
|
| 24 |
+
# Set to inference mode
|
| 25 |
FastVisionModel.for_inference(model)
|
| 26 |
|
| 27 |
+
# Inference function
|
| 28 |
def describe_image(image, instruction):
|
| 29 |
+
# Load and preprocess image
|
| 30 |
+
image = image.convert("RGB")
|
| 31 |
+
inputs = processor(images=image, return_tensors="pt").to(model.device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
|
| 33 |
+
# Create input prompt with instruction
|
| 34 |
+
prompt = instruction if instruction else "Describe this graph."
|
|
|
|
|
|
|
| 35 |
|
| 36 |
+
# Tokenize text prompt
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
input_ids = processor.tokenizer(prompt, return_tensors="pt").input_ids.to(model.device)
|
| 38 |
|
| 39 |
+
# Extract necessary vision inputs
|
| 40 |
+
pixel_values = inputs["pixel_values"]
|
| 41 |
+
aspect_ratio_ids = inputs.get("aspect_ratio_ids")
|
| 42 |
+
aspect_ratio_mask = inputs.get("aspect_ratio_mask")
|
| 43 |
+
|
| 44 |
+
# Generate model output
|
| 45 |
outputs = model.generate(
|
| 46 |
input_ids=input_ids,
|
| 47 |
+
pixel_values=pixel_values,
|
| 48 |
+
aspect_ratio_ids=aspect_ratio_ids,
|
| 49 |
+
aspect_ratio_mask=aspect_ratio_mask,
|
| 50 |
max_new_tokens=256,
|
| 51 |
do_sample=False,
|
| 52 |
temperature=0.2,
|
| 53 |
top_p=0.95,
|
| 54 |
)
|
| 55 |
|
| 56 |
+
# Decode and return result
|
| 57 |
return processor.tokenizer.decode(outputs[0], skip_special_tokens=True).strip()
|
| 58 |
|
| 59 |
+
# Gradio Interface
|
| 60 |
gr.Interface(
|
| 61 |
fn=describe_image,
|
| 62 |
inputs=[
|
|
|
|
| 64 |
gr.Textbox(label="Instruction (e.g. Summarize this graph)")
|
| 65 |
],
|
| 66 |
outputs="text",
|
| 67 |
+
title="Welcome to the Graph Description AI: Pret",
|
| 68 |
description="Upload a graph and get insightful analysis!"
|
| 69 |
).launch()
|
| 70 |
+
|