# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved. import os import cv2 from typing import Union, List import numpy as np import torch import onnxruntime # add at the top with the other typing imports from typing import Union, List, Optional from pose2d_utils import ( read_img, box_convert_simple, bbox_from_detector, crop, keypoints_from_heatmaps, load_pose_metas_from_kp2ds_seq ) import json, math, os def _fmt_box(b): if b is None: return "None" return f"[{float(b[0]):.1f},{float(b[1]):.1f},{float(b[2]):.1f},{float(b[3]):.1f}]" def _draw_box(img, xyxy, color=(0,255,0), thick=2): if xyxy is None: return img x1,y1,x2,y2 = [int(v) for v in xyxy[:4]] x1 = max(0, min(img.shape[1]-1, x1)) x2 = max(0, min(img.shape[1]-1, x2)) y1 = max(0, min(img.shape[0]-1, y1)) y2 = max(0, min(img.shape[0]-1, y2)) cv2.rectangle(img, (x1,y1), (x2,y2), color, thick) return img def _put_text(img, text, org=(5,20)): cv2.putText(img, text, org, cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255,255,255), 2, cv2.LINE_AA) cv2.putText(img, text, org, cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0,0,0), 1, cv2.LINE_AA) return img def _ensure_dir(path): if path and not os.path.isdir(path): os.makedirs(path, exist_ok=True) # add near the other helpers in pose2d.py def _mask_to_xyxy(mask, min_area=10): # mask: (H,W), dtype bool or uint8 ys, xs = np.where(mask > 0) if len(xs) == 0 or len(ys) == 0: return None x1, x2 = xs.min(), xs.max() y1, y2 = ys.min(), ys.max() # ensure at least 1px thick and meets a tiny area to avoid noise if (x2 - x1 + 1) * (y2 - y1 + 1) < min_area: return None return np.array([x1, y1, x2, y2], dtype=float) def _normalize_bbx_input(bbx, num_frames): """ Accepts: - None - single bbox [x1,y1,x2,y2] - list/np.ndarray of per-frame bboxes (N,4) - single mask (H,W) -> applied to all frames - list of per-frame masks (N,H,W) Returns: list length N of either None or [x1,y1,x2,y2] per frame """ if bbx is None: return [None] * num_frames # numpy? if isinstance(bbx, np.ndarray): if bbx.ndim == 1 and bbx.size == 4: return [bbx.astype(float)] * num_frames if bbx.ndim == 2 and bbx.shape[1] == 4: # per-frame bboxes out = [] for i in range(num_frames): out.append(bbx[i].astype(float) if i < len(bbx) else bbx[-1].astype(float)) return out if bbx.ndim == 2: # single 2-D mask (H,W) xyxy = _mask_to_xyxy(bbx) return [xyxy] * num_frames if bbx.ndim == 3: # list of masks (N,H,W) out = [] for i in range(num_frames): m = bbx[i] if i < len(bbx) else bbx[-1] out.append(_mask_to_xyxy(m)) return out # python list? if isinstance(bbx, list): # list of 4-number bbox? if len(bbx) == 4 and all(isinstance(v, (int, float, np.integer, np.floating)) for v in bbx): return [np.array(bbx, dtype=float)] * num_frames # list of per-frame entries (bboxes or masks) out = [] for i in range(num_frames): entry = bbx[i] if i < len(bbx) else bbx[-1] entry = np.array(entry) if entry.ndim == 1 and entry.size == 4: out.append(entry.astype(float)) else: # assume mask-like out.append(_mask_to_xyxy(entry)) return out # fallback: treat as single bbox bbx_np = np.array(bbx).reshape(-1) if bbx_np.size >= 4: return [bbx_np[:4].astype(float)] * num_frames return [None] * num_frames class SimpleOnnxInference(object): def __init__(self, checkpoint, device='cuda', reverse_input=False, **kwargs): if isinstance(device, str): device = torch.device(device) if device.type == 'cuda': device = '{}:{}'.format(device.type, device.index) providers = [("CUDAExecutionProvider", {"device_id": device[-1:] if device[-1] in [str(_i) for _i in range(10)] else "0"}), "CPUExecutionProvider"] else: providers = ["CPUExecutionProvider"] self.device = device if not os.path.exists(checkpoint): raise RuntimeError("{} is not existed!".format(checkpoint)) if os.path.isdir(checkpoint): checkpoint = os.path.join(checkpoint, 'end2end.onnx') self.session = onnxruntime.InferenceSession(checkpoint, providers=providers ) self.input_name = self.session.get_inputs()[0].name self.output_name = self.session.get_outputs()[0].name self.input_resolution = self.session.get_inputs()[0].shape[2:] if not reverse_input else self.session.get_inputs()[0].shape[2:][::-1] self.input_resolution = np.array(self.input_resolution) def __call__(self, *args, **kwargs): return self.forward(*args, **kwargs) def get_output_names(self): output_names = [] for node in self.session.get_outputs(): output_names.append(node.name) return output_names def set_device(self, device): if isinstance(device, str): device = torch.device(device) if device.type == 'cuda': device = '{}:{}'.format(device.type, device.index) providers = [("CUDAExecutionProvider", {"device_id": device[-1:] if device[-1] in [str(_i) for _i in range(10)] else "0"}), "CPUExecutionProvider"] else: providers = ["CPUExecutionProvider"] self.session.set_providers(providers) self.device = device class Yolo(SimpleOnnxInference): def __init__(self, checkpoint, device='cuda', threshold_conf=0.05, threshold_multi_persons=0.1, input_resolution=(640, 640), threshold_iou=0.5, threshold_bbox_shape_ratio=0.4, cat_id=[1], select_type='max', strict=True, sorted_func=None, **kwargs): super(Yolo, self).__init__(checkpoint, device=device, **kwargs) model_inputs = self.session.get_inputs() input_shape = model_inputs[0].shape self.input_width = 640 self.input_height = 640 self.threshold_multi_persons = threshold_multi_persons self.threshold_conf = threshold_conf self.threshold_iou = threshold_iou self.threshold_bbox_shape_ratio = threshold_bbox_shape_ratio self.input_resolution = input_resolution self.cat_id = cat_id self.select_type = select_type self.strict = strict self.sorted_func = sorted_func def preprocess(self, input_image): """ Preprocesses the input image before performing inference. Returns: image_data: Preprocessed image data ready for inference. """ img = read_img(input_image) # Get the height and width of the input image img_height, img_width = img.shape[:2] # Resize the image to match the input shape img = cv2.resize(img, (self.input_resolution[1], self.input_resolution[0])) # Normalize the image data by dividing it by 255.0 image_data = np.array(img) / 255.0 # Transpose the image to have the channel dimension as the first dimension image_data = np.transpose(image_data, (2, 0, 1)) # Channel first # Expand the dimensions of the image data to match the expected input shape # image_data = np.expand_dims(image_data, axis=0).astype(np.float32) image_data = image_data.astype(np.float32) # Return the preprocessed image data return image_data, np.array([img_height, img_width]) def postprocess(self, output, shape_raw, cat_id=[1]): """ Performs post-processing on the model's output to extract bounding boxes, scores, and class IDs. Args: input_image (numpy.ndarray): The input image. output (numpy.ndarray): The output of the model. Returns: numpy.ndarray: The input image with detections drawn on it. """ # Transpose and squeeze the output to match the expected shape outputs = np.squeeze(output) if len(outputs.shape) == 1: outputs = outputs[None] if output.shape[-1] != 6 and output.shape[1] == 84: outputs = np.transpose(outputs) # Get the number of rows in the outputs array rows = outputs.shape[0] # Calculate the scaling factors for the bounding box coordinates x_factor = shape_raw[1] / self.input_width y_factor = shape_raw[0] / self.input_height # Lists to store the bounding boxes, scores, and class IDs of the detections boxes = [] scores = [] class_ids = [] if outputs.shape[-1] == 6: max_scores = outputs[:, 4] classid = outputs[:, -1] threshold_conf_masks = max_scores >= self.threshold_conf classid_masks = classid[threshold_conf_masks] != 3.14159 max_scores = max_scores[threshold_conf_masks][classid_masks] classid = classid[threshold_conf_masks][classid_masks] boxes = outputs[:, :4][threshold_conf_masks][classid_masks] boxes[:, [0, 2]] *= x_factor boxes[:, [1, 3]] *= y_factor boxes[:, 2] = boxes[:, 2] - boxes[:, 0] boxes[:, 3] = boxes[:, 3] - boxes[:, 1] boxes = boxes.astype(np.int32) else: classes_scores = outputs[:, 4:] max_scores = np.amax(classes_scores, -1) threshold_conf_masks = max_scores >= self.threshold_conf classid = np.argmax(classes_scores[threshold_conf_masks], -1) classid_masks = classid!=3.14159 classes_scores = classes_scores[threshold_conf_masks][classid_masks] max_scores = max_scores[threshold_conf_masks][classid_masks] classid = classid[classid_masks] xywh = outputs[:, :4][threshold_conf_masks][classid_masks] x = xywh[:, 0:1] y = xywh[:, 1:2] w = xywh[:, 2:3] h = xywh[:, 3:4] left = ((x - w / 2) * x_factor) top = ((y - h / 2) * y_factor) width = (w * x_factor) height = (h * y_factor) boxes = np.concatenate([left, top, width, height], axis=-1).astype(np.int32) boxes = boxes.tolist() scores = max_scores.tolist() class_ids = classid.tolist() # Apply non-maximum suppression to filter out overlapping bounding boxes indices = cv2.dnn.NMSBoxes(boxes, scores, self.threshold_conf, self.threshold_iou) # Iterate over the selected indices after non-maximum suppression results = [] for i in indices: # Get the box, score, and class ID corresponding to the index box = box_convert_simple(boxes[i], 'xywh2xyxy') score = scores[i] class_id = class_ids[i] results.append(box + [score] + [class_id]) # # Draw the detection on the input image # Return the modified input image return np.array(results) def process_results(self, results, shape_raw, cat_id=[1], single_person=False): if isinstance(results, tuple): det_results = results[0] else: det_results = results person_results = [] person_count = 0 if len(results): max_idx = -1 max_bbox_size = shape_raw[0] * shape_raw[1] * -10 max_bbox_shape = -1 bboxes = [] idx_list = [] for i in range(results.shape[0]): bbox = results[i] if (bbox[-1] + 1 in cat_id) and (bbox[-2] > self.threshold_conf): idx_list.append(i) bbox_shape = max((bbox[2] - bbox[0]), ((bbox[3] - bbox[1]))) if bbox_shape > max_bbox_shape: max_bbox_shape = bbox_shape results = results[idx_list] for i in range(results.shape[0]): bbox = results[i] bboxes.append(bbox) if self.select_type == 'max': bbox_size = (bbox[2] - bbox[0]) * ((bbox[3] - bbox[1])) elif self.select_type == 'center': bbox_size = (abs((bbox[2] + bbox[0]) / 2 - shape_raw[1]/2)) * -1 bbox_shape = max((bbox[2] - bbox[0]), ((bbox[3] - bbox[1]))) if bbox_size > max_bbox_size: if (self.strict or max_idx != -1) and bbox_shape < max_bbox_shape * self.threshold_bbox_shape_ratio: continue max_bbox_size = bbox_size max_bbox_shape = bbox_shape max_idx = i if self.sorted_func is not None and len(bboxes) > 0: max_idx = self.sorted_func(bboxes, shape_raw) bbox = bboxes[max_idx] if self.select_type == 'max': max_bbox_size = (bbox[2] - bbox[0]) * ((bbox[3] - bbox[1])) elif self.select_type == 'center': max_bbox_size = (abs((bbox[2] + bbox[0]) / 2 - shape_raw[1]/2)) * -1 if max_idx != -1: person_count = 1 if max_idx != -1: person = {} person['bbox'] = results[max_idx, :5] person['track_id'] = int(0) person_results.append(person) for i in range(results.shape[0]): bbox = results[i] if (bbox[-1] + 1 in cat_id) and (bbox[-2] > self.threshold_conf): if self.select_type == 'max': bbox_size = (bbox[2] - bbox[0]) * ((bbox[3] - bbox[1])) elif self.select_type == 'center': bbox_size = (abs((bbox[2] + bbox[0]) / 2 - shape_raw[1]/2)) * -1 if i != max_idx and bbox_size > max_bbox_size * self.threshold_multi_persons and bbox_size < max_bbox_size: person_count += 1 if not single_person: person = {} person['bbox'] = results[i, :5] person['track_id'] = int(person_count - 1) person_results.append(person) return person_results else: return None def postprocess_threading(self, outputs, shape_raw, person_results, i, single_person=False, **kwargs): result = self.postprocess(outputs[i], shape_raw[i], cat_id=self.cat_id) result = self.process_results(result, shape_raw[i], cat_id=self.cat_id, single_person=single_person) if result is not None and len(result) != 0: person_results[i] = result def forward(self, img, shape_raw, **kwargs): """ Performs inference using an ONNX model and returns the output image with drawn detections. Returns: output_img: The output image with drawn detections. """ if isinstance(img, torch.Tensor): img = img.cpu().numpy() shape_raw = shape_raw.cpu().numpy() outputs = self.session.run(None, {self.session.get_inputs()[0].name: img})[0] person_results = [[{'bbox': np.array([0., 0., 1.*shape_raw[i][1], 1.*shape_raw[i][0], -1]), 'track_id': -1}] for i in range(len(outputs))] for i in range(len(outputs)): self.postprocess_threading(outputs, shape_raw, person_results, i, **kwargs) return person_results class ViTPose(SimpleOnnxInference): def __init__(self, checkpoint, device='cuda', **kwargs): super(ViTPose, self).__init__(checkpoint, device=device) def forward(self, img, center, scale, **kwargs): heatmaps = self.session.run([], {self.session.get_inputs()[0].name: img})[0] points, prob = keypoints_from_heatmaps(heatmaps=heatmaps, center=center, scale=scale*200, unbiased=True, use_udp=False) return np.concatenate([points, prob], axis=2) @staticmethod def preprocess(img, bbox=None, input_resolution=(256, 192), rescale=1.25, mask=None, **kwargs): if bbox is None or bbox[-1] <= 0 or (bbox[2] - bbox[0]) < 10 or (bbox[3] - bbox[1]) < 10: bbox = np.array([0, 0, img.shape[1], img.shape[0]]) bbox_xywh = bbox if mask is not None: img = np.where(mask>128, img, mask) if isinstance(input_resolution, int): center, scale = bbox_from_detector(bbox_xywh, (input_resolution, input_resolution), rescale=rescale) img, new_shape, old_xy, new_xy = crop(img, center, scale, (input_resolution, input_resolution)) else: center, scale = bbox_from_detector(bbox_xywh, input_resolution, rescale=rescale) img, new_shape, old_xy, new_xy = crop(img, center, scale, (input_resolution[0], input_resolution[1])) IMG_NORM_MEAN = np.array([0.485, 0.456, 0.406]) IMG_NORM_STD = np.array([0.229, 0.224, 0.225]) img_norm = (img / 255. - IMG_NORM_MEAN) / IMG_NORM_STD img_norm = img_norm.transpose(2, 0, 1).astype(np.float32) return img_norm, np.array(center), np.array(scale) # add this small helper anywhere above Pose2d or as a @staticmethod on Pose2d def _iou_xyxy(a, b): # a, b: [x1,y1,x2,y2] ax1, ay1, ax2, ay2 = a bx1, by1, bx2, by2 = b inter_x1 = max(ax1, bx1) inter_y1 = max(ay1, by1) inter_x2 = min(ax2, bx2) inter_y2 = min(ay2, by2) inter_w = max(0, inter_x2 - inter_x1) inter_h = max(0, inter_y2 - inter_y1) inter = inter_w * inter_h area_a = max(0, ax2 - ax1) * max(0, ay2 - ay1) area_b = max(0, bx2 - bx1) * max(0, by2 - by1) denom = area_a + area_b - inter return inter / denom if denom > 0 else 0.0 class Pose2d: def __init__(self, checkpoint, detector_checkpoint=None, device='cuda', **kwargs): if detector_checkpoint is not None: self.detector = Yolo(detector_checkpoint, device) else: self.detector = None self.model = ViTPose(checkpoint, device) self.device = device def load_images(self, inputs): """ Load images from various input types. Args: inputs (Union[str, np.ndarray, List[np.ndarray]]): Input can be file path, single image array, or list of image arrays Returns: List[np.ndarray]: List of RGB image arrays Raises: ValueError: If file format is unsupported or image cannot be read """ if isinstance(inputs, str): if inputs.lower().endswith(('.mp4', '.avi', '.mov', '.mkv')): cap = cv2.VideoCapture(inputs) frames = [] while True: ret, frame = cap.read() if not ret: break frames.append(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)) cap.release() images = frames elif inputs.lower().endswith(('.jpg', '.jpeg', '.png', '.bmp')): img = cv2.cvtColor(cv2.imread(inputs), cv2.COLOR_BGR2RGB) if img is None: raise ValueError(f"Cannot read image: {inputs}") images = [img] else: raise ValueError(f"Unsupported file format: {inputs}") elif isinstance(inputs, np.ndarray): images = [cv2.cvtColor(image, cv2.COLOR_BGR2RGB) for image in inputs] elif isinstance(inputs, list): images = [cv2.cvtColor(image, cv2.COLOR_BGR2RGB) for image in inputs] return images def __call__( self, inputs: Union[str, np.ndarray, List[np.ndarray]], return_image: bool = False, bbx: Optional[Union[List[float], np.ndarray, List[np.ndarray]]] = None, debug: bool = False, debug_dir: Optional[str] = None, **kwargs ): images = self.load_images(inputs) H, W = images[0].shape[:2] N = len(images) if debug: print(f"[Pose2d] N frames: {N}, frame size: {W}x{H}") if isinstance(bbx, list): print(f"[Pose2d] bbx is list, len={len(bbx)}; first entry type={type(bbx[0]).__name__ if len(bbx)>0 else 'empty'}") elif isinstance(bbx, np.ndarray): print(f"[Pose2d] bbx is np.ndarray, shape={bbx.shape}, dtype={bbx.dtype}") else: print(f"[Pose2d] bbx type: {type(bbx).__name__}") _ensure_dir(debug_dir) # 1) detector per frame (if available) det_persons_per_img = None if self.detector is not None: det_persons_per_img = [] for fi, _image in enumerate(images): det_in, shape = self.detector.preprocess(_image) persons = self.detector(det_in[None], shape[None])[0] # list of dicts det_persons_per_img.append(persons) if debug: if persons is None: print(f"[Pose2d][f{fi}] detector -> None") else: boxes = [p['bbox'] for p in persons] print(f"[Pose2d][f{fi}] detector persons: {len(persons)}") for pi, p in enumerate(persons): bb = p['bbox'] sc = float(bb[4]) if len(bb) >= 5 else float('nan') print(f" - det[{pi}]: bbox={_fmt_box(bb[:4])}, score={sc:.3f}, track_id={p.get('track_id', -1)}") # 2) normalize bbx/masks bbx_per_frame = _normalize_bbx_input(bbx, N) if debug: for fi, b in enumerate(bbx_per_frame): print(f"[Pose2d][f{fi}] hint_xyxy: {_fmt_box(b)}") # 3) select bbox per frame chosen_bboxes = [] for idx, _image in enumerate(images): if self.detector is None: chosen_bboxes.append(None) if debug: print(f"[Pose2d][f{idx}] detector=None -> using None bbox") continue persons = det_persons_per_img[idx] if not persons: chosen_bboxes.append(None) if debug: print(f"[Pose2d][f{idx}] no detected persons -> using None bbox") continue hint_xyxy = bbx_per_frame[idx] if hint_xyxy is not None and (hint_xyxy is not None and not (np.array(hint_xyxy[:4]) == None).any()): # IoU against each detected person ious = [] for p in persons: iou = _iou_xyxy(np.array(hint_xyxy[:4], dtype=float), np.array(p['bbox'][:4], dtype=float)) ious.append(iou) best_idx = int(np.argmax(ious)) best = persons[best_idx] chosen_bboxes.append(best['bbox']) if debug: print(f"[Pose2d][f{idx}] IoUs vs hint: {['{:.3f}'.format(v) for v in ious]}") print(f"[Pose2d][f{idx}] chosen det[{best_idx}] -> {_fmt_box(best['bbox'][:4])}") else: chosen_bboxes.append(persons[0]['bbox']) if debug: print(f"[Pose2d][f{idx}] no/empty hint -> fallback det[0] {_fmt_box(persons[0]['bbox'][:4])}") # Optional: write annotated frame if debug_dir: rgb = images[idx].copy() # draw all dets for p in persons or []: _draw_box(rgb, p['bbox'][:4], color=(0,255,255)) # draw hint (blue) if hint_xyxy is not None: _draw_box(rgb, hint_xyxy[:4], color=(255,0,0)) # draw chosen (green) _draw_box(rgb, chosen_bboxes[-1][:4], color=(0,255,0)) _put_text(rgb, f"f{idx}: hint={_fmt_box(hint_xyxy)}, chosen={_fmt_box(chosen_bboxes[-1][:4])}") # convert back to BGR for saving with cv2 bgr = cv2.cvtColor(rgb, cv2.COLOR_RGB2BGR) cv2.imwrite(os.path.join(debug_dir, f"pose2d_dbg_{idx:04d}.jpg"), bgr) # 4) Pose on chosen boxes kp2ds = [] for idx, (_image, _bbox) in enumerate(zip(images, chosen_bboxes)): if debug: print(f"[Pose2d][f{idx}] preprocess with bbox={_fmt_box(_bbox[:4] if _bbox is not None else None)}") img, center, scale = self.model.preprocess(_image, _bbox) out = self.model(img[None], center[None], scale[None]) kp2ds.append(out) if debug: print(f"[Pose2d][f{idx}] kp shape: {out.shape}") kp2ds = np.concatenate(kp2ds, 0) metas = load_pose_metas_from_kp2ds_seq(kp2ds, width=W, height=H) if debug: print(f"[Pose2d] metas frames: {len(metas)}") if len(metas) > 0 and 'keypoints2d' in metas[0]: print(f"[Pose2d] first frame keypoints2d shape: {np.array(metas[0]['keypoints2d']).shape}") return metas