import gradio as gr from transformers import AutoTokenizer, AutoModelForCausalLM import torch # Model configurations MODELS = { "BM1_CS1_Syn (33M)": "withmartian/sql_interp_bm1_cs1_experiment_1.10", "BM1_CS2_Syn (33M)": "withmartian/sql_interp_bm1_cs2_experiment_2.10", "BM1_CS3_Syn (33M)": "withmartian/sql_interp_bm1_cs3_experiment_3.10", "BM1_CS4_Syn (33M)": "withmartian/sql_interp_bm1_cs4_dataset_synonyms_experiment_1.1", "BM1_CS5_Syn (33M)": "withmartian/sql_interp_bm1_cs5_dataset_synonyms_experiment_1.2", "BM2_CS1_Syn (0.5B)": "withmartian/sql_interp_bm2_cs1_experiment_4.3", "BM2_CS2_Syn (0.5B)": "withmartian/sql_interp_bm2_cs2_experiment_5.3", "BM2_CS3_Syn (0.5B)": "withmartian/sql_interp_bm2_cs3_experiment_6.3", "BM3_CS1_Syn (1B)": "withmartian/sql_interp_bm3_cs1_experiment_7.3", "BM3_CS2_Syn (1B)": "withmartian/sql_interp_bm3_cs2_experiment_8.3", "BM3_CS3_Syn (1B)": "withmartian/sql_interp_bm3_cs3_experiment_9.3", } model_cache = {} def load_model(model_name): if model_name not in model_cache: model_id = MODELS[model_name] tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained( model_id, torch_dtype=torch.float16, device_map="auto" ) model_cache[model_name] = (tokenizer, model) return model_cache[model_name] def generate_sql(model_name, instruction, schema, max_length=256, temperature=0.7): if not model_name or not instruction or not schema: return "Please fill in all fields and select a model" try: tokenizer, model = load_model(model_name) prompt = f"""### Instruction: {instruction} ### Context: {schema} ### Response:""" inputs = tokenizer(prompt, return_tensors="pt").to(model.device) outputs = model.generate( **inputs, max_length=max_length, temperature=temperature, do_sample=temperature > 0, pad_token_id=tokenizer.eos_token_id ) generated = tokenizer.decode(outputs[0], skip_special_tokens=True) if "### Response:" in generated: sql = generated.split("### Response:")[-1].strip() else: sql = generated.strip() return sql except Exception as e: return f"Error: {str(e)}" examples = [ [ "BM1_CS1_Syn (33M)", "Show me the name and salary from employees", "CREATE TABLE employees (name VARCHAR(100), salary INT, department VARCHAR(100))" ], [ "BM2_CS2_Syn (0.5B)", "List worker earnings from highest to lowest", "CREATE TABLE employees (name VARCHAR(100), salary INT, department VARCHAR(100))" ], [ "BM3_CS3_Syn (1B)", "Count how many employees in each department", "CREATE TABLE employees (name VARCHAR(100), salary INT, department VARCHAR(100))" ], ] def model_demo(shared_instruction, shared_schema): """Model demo component that can receive examples from dataset viewer""" gr.HTML("""

TinySQL Interactive Demo

Transform natural language into SQL queries using mechanistically interpretable models

""") gr.HTML("""
How it works: Select a model, describe your query in plain English, and watch the model generate SQL.
""") with gr.Row(): with gr.Column(scale=1): gr.Markdown("### Configuration") model_dropdown = gr.Dropdown( choices=list(MODELS.keys()), value="BM2_CS2_Syn (0.5B)", label="Model Selection", info="Larger models = better accuracy, slower inference" ) gr.HTML("""
BM1 (33M) - Lightning fast, simple queries
BM2 (0.5B) - Balanced performance
BM3 (1B) - Most accurate, complex queries

Dataset Complexity:
CS1: Basic SELECT-FROM
CS2: Adds ORDER BY
CS3: Aggregations
CS4: Adds WHERE filters
CS5: Multi-table JOINs
""") with gr.Column(scale=2): gr.Markdown("### Your Query") instruction = gr.Textbox( label="What do you want to know?", placeholder="e.g., Find all employees earning more than $50,000 sorted by name", lines=2, value="" ) schema = gr.Textbox( label="Database Schema", placeholder="CREATE TABLE employees (name VARCHAR, salary INT, department VARCHAR)", lines=3, value="CREATE TABLE employees (name VARCHAR(100), salary INT, department VARCHAR(100))" ) with gr.Row(): max_length = gr.Slider(64, 512, value=256, step=32, label="Max Length") temperature = gr.Slider(0.0, 1.0, value=0.1, step=0.1, label="Temperature") generate_btn = gr.Button("Generate SQL", variant="primary", size="lg") output = gr.Code(label="Generated SQL Query", language="sql", lines=8) gr.Markdown("### Example Queries") gr.Examples(examples=examples, inputs=[model_dropdown, instruction, schema]) # Update instruction and schema from shared state when values change def update_from_shared(shared_inst, shared_sch): return shared_inst if shared_inst else "", shared_sch if shared_sch else "" shared_instruction.change( fn=lambda x: x, inputs=shared_instruction, outputs=instruction ) shared_schema.change( fn=lambda x: x, inputs=shared_schema, outputs=schema ) generate_btn.click( fn=generate_sql, inputs=[model_dropdown, instruction, schema, max_length, temperature], outputs=output ) return { 'instruction': instruction, 'schema': schema, 'output': output }