Spaces:
Running
on
Zero
Running
on
Zero
Update gradio_tabs/vid_edit.py
Browse files- gradio_tabs/vid_edit.py +64 -152
gradio_tabs/vid_edit.py
CHANGED
|
@@ -37,118 +37,92 @@ labels_v = [
|
|
| 37 |
]
|
| 38 |
|
| 39 |
|
| 40 |
-
@torch.compiler.allow_in_graph
|
| 41 |
def load_image(img, size):
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
img = np.copy(img)
|
| 48 |
img = np.transpose(img, (2, 0, 1)) # 3 x 256 x 256
|
| 49 |
|
| 50 |
-
return img / 255.0
|
| 51 |
|
| 52 |
|
| 53 |
-
@torch.compiler.allow_in_graph
|
| 54 |
def img_preprocessing(img_path, size):
|
| 55 |
-
img
|
| 56 |
img = torch.from_numpy(img).unsqueeze(0).float() # [0, 1]
|
| 57 |
imgs_norm = (img - 0.5) * 2.0 # [-1, 1]
|
| 58 |
|
| 59 |
-
return imgs_norm
|
| 60 |
-
|
| 61 |
-
# Pre-compile resize transforms for better performance
|
| 62 |
-
resize_transform_cache = {}
|
| 63 |
|
| 64 |
-
def get_resize_transform(size):
|
| 65 |
-
"""Get cached resize transform - creates once, reuses many times"""
|
| 66 |
-
if size not in resize_transform_cache:
|
| 67 |
-
# Only create the transform if it doesn't exist in cache
|
| 68 |
-
resize_transform_cache[size] = torchvision.transforms.Resize(
|
| 69 |
-
size,
|
| 70 |
-
interpolation=torchvision.transforms.InterpolationMode.BILINEAR,
|
| 71 |
-
antialias=True
|
| 72 |
-
)
|
| 73 |
-
return resize_transform_cache[size]
|
| 74 |
|
| 75 |
def resize(img, size):
|
| 76 |
-
|
| 77 |
-
|
|
|
|
|
|
|
| 78 |
return transform(img)
|
| 79 |
|
| 80 |
|
| 81 |
def resize_back(img, w, h):
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
|
|
|
|
|
|
|
| 86 |
|
| 87 |
def vid_preprocessing(vid_path, size):
|
| 88 |
vid_dict = torchvision.io.read_video(vid_path, pts_unit='sec')
|
| 89 |
-
vid = vid_dict[0].permute(0, 3, 1, 2) #
|
| 90 |
-
_,_,h,w = vid.size()
|
| 91 |
fps = vid_dict[2]['video_fps']
|
| 92 |
vid_norm = (vid / 255.0 - 0.5) * 2.0 # [-1, 1]
|
| 93 |
|
| 94 |
-
vid_norm =
|
|
|
|
|
|
|
| 95 |
|
| 96 |
return vid_norm, fps, w, h
|
| 97 |
|
| 98 |
|
| 99 |
def img_denorm(img):
|
| 100 |
-
img = img.clamp(-1, 1)
|
| 101 |
img = (img - img.min()) / (img.max() - img.min())
|
| 102 |
|
| 103 |
return img
|
| 104 |
|
| 105 |
|
| 106 |
def vid_denorm(vid):
|
| 107 |
-
vid = vid.clamp(-1, 1)
|
| 108 |
vid = (vid - vid.min()) / (vid.max() - vid.min())
|
| 109 |
|
| 110 |
return vid
|
| 111 |
|
| 112 |
|
| 113 |
def img_postprocessing(image, w, h):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 114 |
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
img = img_denorm(img)
|
| 119 |
-
|
| 120 |
-
# Single optimized CPU transfer
|
| 121 |
-
img = img.squeeze(0).permute(1, 2, 0).contiguous() # contiguous() for fast transfer
|
| 122 |
-
img_output = (img.cpu().numpy() * 255).astype(np.uint8) # Single CPU transfer
|
| 123 |
-
|
| 124 |
-
# return the Numpy array directly, since Gradio supports it
|
| 125 |
-
return img_output
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
def process_first_frame(vid_path, size):
|
| 129 |
-
vid_dict = torchvision.io.read_video(vid_path, start_pts=0, end_pts=0, pts_unit='sec')
|
| 130 |
-
img = vid_dict[0].permute(0, 3, 1, 2) # bchw
|
| 131 |
-
_, _, h, w = img.size()
|
| 132 |
-
img_norm = (img / 255.0 - 0.5) * 2.0 # [-1, 1]
|
| 133 |
-
img_norm = resize(img_norm, size)
|
| 134 |
-
|
| 135 |
-
return img_norm, w, h
|
| 136 |
|
| 137 |
|
| 138 |
def vid_all_save(vid_d, vid_a, w, h, fps):
|
| 139 |
-
# vid_d: tchw
|
| 140 |
-
# vid_a: tchw
|
| 141 |
|
| 142 |
-
t,
|
| 143 |
-
vid_d_batch = resize_back(vid_d, w, h)
|
| 144 |
-
vid_a_batch = resize_back(vid_a, w, h)
|
| 145 |
-
|
| 146 |
-
vid_d = rearrange(vid_d_batch, "t c h w -> t h w c")
|
| 147 |
-
vid_a = rearrange(vid_a_batch, "t c h w -> t h w c")
|
| 148 |
-
vid_all = torch.cat([vid_d, vid_a], dim=
|
| 149 |
|
| 150 |
-
vid_a_np = (vid_denorm(vid_a).
|
| 151 |
-
vid_all_np = (vid_denorm(vid_all).
|
| 152 |
|
| 153 |
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as output_path:
|
| 154 |
imageio.mimwrite(output_path.name, vid_a_np, fps=fps, codec='libx264', quality=8)
|
|
@@ -160,59 +134,16 @@ def vid_all_save(vid_d, vid_a, w, h, fps):
|
|
| 160 |
|
| 161 |
|
| 162 |
def vid_edit(gen, chunk_size, device):
|
| 163 |
-
|
| 164 |
-
@torch.compile
|
| 165 |
-
def compiled_enc_img(image_tensor, selected_s):
|
| 166 |
-
"""Compiled version of just the model inference"""
|
| 167 |
-
return gen.enc_img(image_tensor, labels_v, selected_s)
|
| 168 |
-
|
| 169 |
-
@torch.compile
|
| 170 |
-
def compiled_dec_img(z_s2r, alpha_r2s, feat_rgb):
|
| 171 |
-
"""Compiled version of just the model inference"""
|
| 172 |
-
return gen.dec_img(z_s2r, alpha_r2s, feat_rgb)
|
| 173 |
-
|
| 174 |
-
@torch.compile
|
| 175 |
-
def compiled_dec_vid(z_s2r, alpha_r2s, feat_rgb, img_start, img_target_batch):
|
| 176 |
-
"""Compiled version of animate_batch for animation tab"""
|
| 177 |
-
return gen.dec_vid(z_s2r, alpha_r2s, feat_rgb, img_start, img_target_batch)
|
| 178 |
-
|
| 179 |
-
# Pre-warm the compiled model with dummy data to reduce first-run compilation time
|
| 180 |
-
def _warmup_model():
|
| 181 |
-
"""Pre-warm the model compilation with representative shapes"""
|
| 182 |
-
print("[img_edit] Pre-warming model compilation...")
|
| 183 |
-
dummy_image = torch.randn(1, 3, 512, 512, device=device)
|
| 184 |
-
dummy_video = torch.randn(chunk_size, 3, 512, 512, device=device)
|
| 185 |
-
dummy_selected_s = [0.0] * len(labels_v)
|
| 186 |
-
|
| 187 |
-
try:
|
| 188 |
-
with torch.inference_mode():
|
| 189 |
-
z_s2r, alpha_r2s, feat_rgb = compiled_enc_img(dummy_image, dummy_selected_s)
|
| 190 |
-
_ = compiled_dec_img(z_s2r, alpha_r2s, feat_rgb)
|
| 191 |
-
print("[img_edit] Model pre-warming completed successfully")
|
| 192 |
-
except Exception as e:
|
| 193 |
-
print(f"[img_edit] Model pre-warming failed (will compile on first use): {e}")
|
| 194 |
-
|
| 195 |
-
try:
|
| 196 |
-
with torch.inference_mode():
|
| 197 |
-
z_s2r, alpha_r2s, feat_rgb = compiled_enc_img(dummy_image, dummy_selected_s)
|
| 198 |
-
_ = compiled_dec_vid(z_s2r, alpha_r2s, feat_rgb, dummy_video[0], dummy_video)
|
| 199 |
-
print("[img_animation] Model pre-warming completed successfully")
|
| 200 |
-
except Exception as e:
|
| 201 |
-
print(f"[img_animation] Model pre-warming failed (will compile on first use): {e}")
|
| 202 |
-
|
| 203 |
-
# Pre-warm the model
|
| 204 |
-
_warmup_model()
|
| 205 |
-
|
| 206 |
-
|
| 207 |
@spaces.GPU
|
| 208 |
-
@torch.
|
| 209 |
def edit_img(video, *selected_s):
|
| 210 |
|
| 211 |
-
|
| 212 |
-
|
|
|
|
| 213 |
|
| 214 |
-
|
| 215 |
-
edited_image_tensor = compiled_dec_img(z_s2r, alpha_r2s, feat_rgb)
|
| 216 |
|
| 217 |
# de-norm
|
| 218 |
edited_image = img_postprocessing(edited_image_tensor, w, h)
|
|
@@ -220,37 +151,21 @@ def vid_edit(gen, chunk_size, device):
|
|
| 220 |
return edited_image
|
| 221 |
|
| 222 |
@spaces.GPU
|
| 223 |
-
@torch.
|
| 224 |
def edit_vid(video, *selected_s):
|
| 225 |
|
| 226 |
video_target_tensor, fps, w, h = vid_preprocessing(video, 512)
|
| 227 |
video_target_tensor = video_target_tensor.to(device)
|
| 228 |
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
res = []
|
| 232 |
-
t = video_target_tensor.size(1)
|
| 233 |
-
chunks = t // chunk_size
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
z_s2r, alpha_r2s, feat_rgb = compiled_enc_img(img_start, selected_s)
|
| 237 |
-
for i in range(chunks + 1):
|
| 238 |
-
if i == chunks:
|
| 239 |
-
img_target_batch = video_target_tensor[i * chunk_size:, :, :, :]
|
| 240 |
-
img_animated_batch = compiled_dec_vid(z_s2r, alpha_r2s, feat_rgb, img_start, img_target_batch)
|
| 241 |
-
else:
|
| 242 |
-
img_target_batch = video_target_tensor[i * chunk_size:(i + 1) * chunk_size, :, :, :]
|
| 243 |
-
img_animated_batch = compiled_dec_vid(z_s2r, alpha_r2s, feat_rgb, img_start, img_target_batch)
|
| 244 |
-
|
| 245 |
-
res.append(img_animated_batch)
|
| 246 |
-
edited_video_tensor = torch.cat(res, dim=0) # TCHW
|
| 247 |
-
edited_image_tensor = edited_video_tensor[0:1,:,:,:]
|
| 248 |
|
| 249 |
# de-norm
|
| 250 |
animated_video, animated_all_video = vid_all_save(video_target_tensor, edited_video_tensor, w, h, fps)
|
| 251 |
edited_image = img_postprocessing(edited_image_tensor, w, h)
|
| 252 |
|
| 253 |
-
return edited_image, animated_video, animated_all_video
|
|
|
|
| 254 |
|
| 255 |
def clear_media():
|
| 256 |
return None, None, None, *([0] * len(labels_k))
|
|
@@ -295,7 +210,7 @@ def vid_edit(gen, chunk_size, device):
|
|
| 295 |
video_all_output = gr.Video(label="Videos", elem_id="output_vid_all")
|
| 296 |
|
| 297 |
with gr.Column(scale=1):
|
| 298 |
-
with gr.Accordion("Control Panel
|
| 299 |
with gr.Tab("Head"):
|
| 300 |
with gr.Row():
|
| 301 |
for k in labels_k[:3]:
|
|
@@ -329,20 +244,17 @@ def vid_edit(gen, chunk_size, device):
|
|
| 329 |
with gr.Row():
|
| 330 |
with gr.Column(scale=1):
|
| 331 |
with gr.Row(): # Buttons now within a single Row
|
| 332 |
-
|
| 333 |
-
animate_btn = gr.Button("Generate",elem_id="button_generate")
|
| 334 |
clear_btn = gr.Button("Clear",elem_id="button_clear")
|
| 335 |
-
|
| 336 |
-
|
| 337 |
-
|
| 338 |
-
|
| 339 |
-
|
| 340 |
-
|
| 341 |
-
|
| 342 |
-
|
| 343 |
-
|
| 344 |
-
stream_every=0.5
|
| 345 |
-
)
|
| 346 |
|
| 347 |
animate_btn.click(
|
| 348 |
fn=edit_vid,
|
|
@@ -368,9 +280,9 @@ def vid_edit(gen, chunk_size, device):
|
|
| 368 |
['./data/driving/driving9.mp4', 0, 0, 0, 0, 0, 0, 0,
|
| 369 |
0, 0, 0, 0, 0, -0.1, 0.07],
|
| 370 |
],
|
| 371 |
-
|
| 372 |
inputs=[video_input] + inputs_s,
|
| 373 |
-
|
| 374 |
)
|
| 375 |
|
| 376 |
|
|
|
|
| 37 |
]
|
| 38 |
|
| 39 |
|
|
|
|
| 40 |
def load_image(img, size):
|
| 41 |
+
# img = Image.open(filename).convert('RGB')
|
| 42 |
+
if not isinstance(img, np.ndarray):
|
| 43 |
+
img = Image.open(img).convert('RGB')
|
| 44 |
+
img = img.resize((size, size))
|
| 45 |
+
img = np.asarray(img)
|
|
|
|
| 46 |
img = np.transpose(img, (2, 0, 1)) # 3 x 256 x 256
|
| 47 |
|
| 48 |
+
return img / 255.0
|
| 49 |
|
| 50 |
|
|
|
|
| 51 |
def img_preprocessing(img_path, size):
|
| 52 |
+
img = load_image(img_path, size) # [0, 1]
|
| 53 |
img = torch.from_numpy(img).unsqueeze(0).float() # [0, 1]
|
| 54 |
imgs_norm = (img - 0.5) * 2.0 # [-1, 1]
|
| 55 |
|
| 56 |
+
return imgs_norm
|
|
|
|
|
|
|
|
|
|
| 57 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
|
| 59 |
def resize(img, size):
|
| 60 |
+
transform = torchvision.transforms.Compose([
|
| 61 |
+
torchvision.transforms.Resize((size, size), antialias=True),
|
| 62 |
+
])
|
| 63 |
+
|
| 64 |
return transform(img)
|
| 65 |
|
| 66 |
|
| 67 |
def resize_back(img, w, h):
|
| 68 |
+
transform = torchvision.transforms.Compose([
|
| 69 |
+
torchvision.transforms.Resize((h, w), antialias=True),
|
| 70 |
+
])
|
| 71 |
|
| 72 |
+
return transform(img)
|
| 73 |
+
|
| 74 |
|
| 75 |
def vid_preprocessing(vid_path, size):
|
| 76 |
vid_dict = torchvision.io.read_video(vid_path, pts_unit='sec')
|
| 77 |
+
vid = vid_dict[0].permute(0, 3, 1, 2).unsqueeze(0) # btchw
|
| 78 |
+
_,_,_,h,w = vid.size()
|
| 79 |
fps = vid_dict[2]['video_fps']
|
| 80 |
vid_norm = (vid / 255.0 - 0.5) * 2.0 # [-1, 1]
|
| 81 |
|
| 82 |
+
vid_norm = torch.cat([
|
| 83 |
+
resize(vid_norm[:, i, :, :, :], size).unsqueeze(1) for i in range(vid.size(1))
|
| 84 |
+
], dim=1)
|
| 85 |
|
| 86 |
return vid_norm, fps, w, h
|
| 87 |
|
| 88 |
|
| 89 |
def img_denorm(img):
|
| 90 |
+
img = img.clamp(-1, 1).cpu()
|
| 91 |
img = (img - img.min()) / (img.max() - img.min())
|
| 92 |
|
| 93 |
return img
|
| 94 |
|
| 95 |
|
| 96 |
def vid_denorm(vid):
|
| 97 |
+
vid = vid.clamp(-1, 1).cpu()
|
| 98 |
vid = (vid - vid.min()) / (vid.max() - vid.min())
|
| 99 |
|
| 100 |
return vid
|
| 101 |
|
| 102 |
|
| 103 |
def img_postprocessing(image, w, h):
|
| 104 |
+
image = resize_back(image, w, h)
|
| 105 |
+
image = image.permute(0, 2, 3, 1)
|
| 106 |
+
edited_image = img_denorm(image)
|
| 107 |
+
img_output = (edited_image[0].numpy() * 255).astype(np.uint8)
|
| 108 |
|
| 109 |
+
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as temp_file:
|
| 110 |
+
imageio.imwrite(temp_file.name, img_output, quality=6)
|
| 111 |
+
return temp_file.name
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 112 |
|
| 113 |
|
| 114 |
def vid_all_save(vid_d, vid_a, w, h, fps):
|
|
|
|
|
|
|
| 115 |
|
| 116 |
+
b,t,c,_,_ = vid_d.size()
|
| 117 |
+
vid_d_batch = resize_back(rearrange(vid_d, "b t c h w -> (b t) c h w"), w, h)
|
| 118 |
+
vid_a_batch = resize_back(rearrange(vid_a, "b c t h w -> (b t) c h w"), w, h)
|
| 119 |
+
|
| 120 |
+
vid_d = rearrange(vid_d_batch, "(b t) c h w -> b t h w c", b=b) # B T H W C
|
| 121 |
+
vid_a = rearrange(vid_a_batch, "(b t) c h w -> b t h w c", b=b) # B T H W C
|
| 122 |
+
vid_all = torch.cat([vid_d, vid_a], dim=3)
|
| 123 |
|
| 124 |
+
vid_a_np = (vid_denorm(vid_a[0]).numpy() * 255).astype('uint8')
|
| 125 |
+
vid_all_np = (vid_denorm(vid_all[0]).numpy() * 255).astype('uint8')
|
| 126 |
|
| 127 |
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as output_path:
|
| 128 |
imageio.mimwrite(output_path.name, vid_a_np, fps=fps, codec='libx264', quality=8)
|
|
|
|
| 134 |
|
| 135 |
|
| 136 |
def vid_edit(gen, chunk_size, device):
|
| 137 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 138 |
@spaces.GPU
|
| 139 |
+
@torch.no_grad()
|
| 140 |
def edit_img(video, *selected_s):
|
| 141 |
|
| 142 |
+
vid_target_tensor, fps, w, h = vid_preprocessing(video, 512)
|
| 143 |
+
video_target_tensor = vid_target_tensor.to(device)
|
| 144 |
+
image_tensor = video_target_tensor[:,0,:,:,:]
|
| 145 |
|
| 146 |
+
edited_image_tensor = gen.edit_img(image_tensor, labels_v, selected_s)
|
|
|
|
| 147 |
|
| 148 |
# de-norm
|
| 149 |
edited_image = img_postprocessing(edited_image_tensor, w, h)
|
|
|
|
| 151 |
return edited_image
|
| 152 |
|
| 153 |
@spaces.GPU
|
| 154 |
+
@torch.no_grad()
|
| 155 |
def edit_vid(video, *selected_s):
|
| 156 |
|
| 157 |
video_target_tensor, fps, w, h = vid_preprocessing(video, 512)
|
| 158 |
video_target_tensor = video_target_tensor.to(device)
|
| 159 |
|
| 160 |
+
edited_video_tensor = gen.edit_vid_batch(video_target_tensor, labels_v, selected_s, chunk_size)
|
| 161 |
+
edited_image_tensor = edited_video_tensor[:,:,0,:,:]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 162 |
|
| 163 |
# de-norm
|
| 164 |
animated_video, animated_all_video = vid_all_save(video_target_tensor, edited_video_tensor, w, h, fps)
|
| 165 |
edited_image = img_postprocessing(edited_image_tensor, w, h)
|
| 166 |
|
| 167 |
+
return edited_image, animated_video, animated_all_video
|
| 168 |
+
|
| 169 |
|
| 170 |
def clear_media():
|
| 171 |
return None, None, None, *([0] * len(labels_k))
|
|
|
|
| 210 |
video_all_output = gr.Video(label="Videos", elem_id="output_vid_all")
|
| 211 |
|
| 212 |
with gr.Column(scale=1):
|
| 213 |
+
with gr.Accordion("Control Panel", open=True):
|
| 214 |
with gr.Tab("Head"):
|
| 215 |
with gr.Row():
|
| 216 |
for k in labels_k[:3]:
|
|
|
|
| 244 |
with gr.Row():
|
| 245 |
with gr.Column(scale=1):
|
| 246 |
with gr.Row(): # Buttons now within a single Row
|
| 247 |
+
edit_btn = gr.Button("Edit",elem_id="button_edit")
|
|
|
|
| 248 |
clear_btn = gr.Button("Clear",elem_id="button_clear")
|
| 249 |
+
with gr.Row():
|
| 250 |
+
animate_btn = gr.Button("Generate",elem_id="button_generate")
|
| 251 |
+
|
| 252 |
+
edit_btn.click(
|
| 253 |
+
fn=edit_img,
|
| 254 |
+
inputs=[video_input] + inputs_s,
|
| 255 |
+
outputs=[image_output],
|
| 256 |
+
show_progress=True
|
| 257 |
+
)
|
|
|
|
|
|
|
| 258 |
|
| 259 |
animate_btn.click(
|
| 260 |
fn=edit_vid,
|
|
|
|
| 280 |
['./data/driving/driving9.mp4', 0, 0, 0, 0, 0, 0, 0,
|
| 281 |
0, 0, 0, 0, 0, -0.1, 0.07],
|
| 282 |
],
|
| 283 |
+
fn=edit_vid,
|
| 284 |
inputs=[video_input] + inputs_s,
|
| 285 |
+
outputs=[image_output, video_output, video_all_output],
|
| 286 |
)
|
| 287 |
|
| 288 |
|