Spaces:
Running
on
Zero
Running
on
Zero
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| import math | |
| from .op import (FusedLeakyReLU, fused_leaky_relu, upfirdn2d) | |
| import numpy as np | |
| def make_kernel(k): | |
| k = torch.tensor(k, dtype=torch.float32) | |
| if k.ndim == 1: | |
| k = k[None, :] * k[:, None] | |
| k /= k.sum() | |
| return k | |
| class Blur(nn.Module): | |
| def __init__(self, kernel, pad, upsample_factor=1): | |
| super().__init__() | |
| kernel = make_kernel(kernel) | |
| if upsample_factor > 1: | |
| kernel = kernel * (upsample_factor ** 2) | |
| self.register_buffer('kernel', kernel) | |
| self.pad = pad | |
| def forward(self, input): | |
| return upfirdn2d(input, self.kernel, pad=self.pad) | |
| class ScaledLeakyReLU(nn.Module): | |
| def __init__(self, negative_slope=0.2): | |
| super().__init__() | |
| self.negative_slope = negative_slope | |
| def forward(self, input): | |
| return F.leaky_relu(input, negative_slope=self.negative_slope) | |
| class EqualConv2d(nn.Module): | |
| def __init__(self, in_channel, out_channel, kernel_size, stride=1, padding=0, bias=True): | |
| super().__init__() | |
| self.weight = nn.Parameter(torch.randn(out_channel, in_channel, kernel_size, kernel_size)) | |
| self.scale = 1 / math.sqrt(in_channel * kernel_size ** 2) | |
| self.stride = stride | |
| self.padding = padding | |
| if bias: | |
| self.bias = nn.Parameter(torch.zeros(out_channel)) | |
| else: | |
| self.bias = None | |
| def forward(self, input): | |
| return F.conv2d(input, self.weight * self.scale, bias=self.bias, stride=self.stride, padding=self.padding) | |
| def __repr__(self): | |
| return ( | |
| f'{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]},' | |
| f' {self.weight.shape[2]}, stride={self.stride}, padding={self.padding})' | |
| ) | |
| class EqualLinear(nn.Module): | |
| def __init__(self, in_dim, out_dim, bias=True, bias_init=0, lr_mul=1, activation=None): | |
| super().__init__() | |
| self.weight = nn.Parameter(torch.randn(out_dim, in_dim).div_(lr_mul)) | |
| bias_init = np.broadcast_to(np.asarray(bias_init, dtype=np.float32), [out_dim]) | |
| if bias: | |
| self.bias = nn.Parameter(torch.from_numpy(bias_init / lr_mul)) | |
| #self.bias = nn.Parameter(torch.zeros(out_dim).fill_(bias_init)) | |
| else: | |
| self.bias = None | |
| self.activation = activation | |
| self.scale = (1 / math.sqrt(in_dim)) * lr_mul | |
| self.lr_mul = lr_mul | |
| def forward(self, input): | |
| if self.activation: | |
| out = F.linear(input, self.weight * self.scale) | |
| out = fused_leaky_relu(out, self.bias * self.lr_mul) | |
| else: | |
| out = F.linear(input, self.weight * self.scale, bias=self.bias * self.lr_mul) | |
| return out | |
| def __repr__(self): | |
| return (f'{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]})') | |
| class ConvLayer(nn.Sequential): | |
| def __init__( | |
| self, | |
| in_channel, | |
| out_channel, | |
| kernel_size, | |
| downsample=False, | |
| upsample=False, | |
| blur_kernel=[1, 3, 3, 1], | |
| bias=True, | |
| activate=True, | |
| ): | |
| layers = [] | |
| if downsample: | |
| factor = 2 | |
| p = (len(blur_kernel) - factor) + (kernel_size - 1) | |
| pad0 = (p + 1) // 2 | |
| pad1 = p // 2 | |
| layers.append(Blur(blur_kernel, pad=(pad0, pad1))) | |
| stride = 2 | |
| self.padding = 0 | |
| elif upsample: | |
| layers.append(Upsample(blur_kernel)) | |
| stride = 1 | |
| self.padding = kernel_size // 2 | |
| else: | |
| stride = 1 | |
| self.padding = kernel_size // 2 | |
| layers.append(EqualConv2d(in_channel, out_channel, kernel_size, padding=self.padding, stride=stride, | |
| bias=bias and not activate)) | |
| if activate: | |
| if bias: | |
| layers.append(FusedLeakyReLU(out_channel)) | |
| else: | |
| layers.append(ScaledLeakyReLU(0.2)) | |
| super().__init__(*layers) | |
| class ResBlock(nn.Module): | |
| def __init__(self, in_channel, out_channel, blur_kernel=[1, 3, 3, 1]): | |
| super().__init__() | |
| self.conv1 = ConvLayer(in_channel, in_channel, 3) | |
| self.conv2 = ConvLayer(in_channel, out_channel, 3) | |
| self.skip = nn.Identity() | |
| def forward(self, input): | |
| out = self.conv1(input) | |
| out = self.conv2(out) | |
| skip = self.skip(input) | |
| out = (out + skip) / math.sqrt(2) | |
| return out | |
| class ResDownBlock(nn.Module): | |
| def __init__(self, in_channel, out_channel, blur_kernel=[1, 3, 3, 1]): | |
| super().__init__() | |
| self.conv1 = ConvLayer(in_channel, in_channel, 3) | |
| self.conv2 = ConvLayer(in_channel, out_channel, 3, downsample=True) | |
| self.skip = ConvLayer(in_channel, out_channel, 1, downsample=True, activate=False, bias=False) | |
| def forward(self, input): | |
| out = self.conv1(input) | |
| out = self.conv2(out) | |
| skip = self.skip(input) | |
| out = (out + skip) / math.sqrt(2) | |
| return out | |
| class ResUpBlock(nn.Module): | |
| def __init__(self, in_channel, out_channel, blur_kernel=[1, 3, 3, 1]): | |
| super().__init__() | |
| self.conv1 = ConvLayer(in_channel, out_channel, 3, upsample=True) | |
| self.conv2 = ConvLayer(out_channel, out_channel, 3, upsample=False) | |
| if in_channel != out_channel: | |
| self.skip = ConvLayer(in_channel, out_channel, 1, upsample=True, activate=False, bias=False) | |
| else: | |
| self.skip = torch.nn.Identity() | |
| def forward(self, x): | |
| out = self.conv1(x) | |
| out = self.conv2(out) | |
| skip = self.skip(x) | |
| out = (out + skip) / math.sqrt(2) | |
| return out | |
| class Upsample(nn.Module): | |
| def __init__(self, kernel, factor=2): | |
| super().__init__() | |
| self.factor = factor | |
| kernel = make_kernel(kernel) * (factor ** 2) | |
| self.register_buffer('kernel', kernel) | |
| p = kernel.shape[0] - factor | |
| pad0 = (p + 1) // 2 + factor - 1 | |
| pad1 = p // 2 | |
| self.pad = (pad0, pad1) | |
| def forward(self, input): | |
| return upfirdn2d(input, self.kernel, up=self.factor, down=1, pad=self.pad) | |
| class Downsample(nn.Module): | |
| def __init__(self, kernel, factor=2): | |
| super().__init__() | |
| self.factor = factor | |
| kernel = make_kernel(kernel) | |
| self.register_buffer('kernel', kernel) | |
| p = kernel.shape[0] - factor | |
| pad0 = (p + 1) // 2 | |
| pad1 = p // 2 | |
| self.pad = (pad0, pad1) | |
| def forward(self, input): | |
| return upfirdn2d(input, self.kernel, up=1, down=self.factor, pad=self.pad) | |
| class ModulatedConv2d(nn.Module): | |
| def __init__(self, in_channel, out_channel, kernel_size, style_dim, demodulate=True, upsample=False, | |
| downsample=False, blur_kernel=[1, 3, 3, 1], ): | |
| super().__init__() | |
| self.eps = 1e-8 | |
| self.kernel_size = kernel_size | |
| self.in_channel = in_channel | |
| self.out_channel = out_channel | |
| self.upsample = upsample | |
| self.downsample = downsample | |
| if upsample: | |
| factor = 2 | |
| p = (len(blur_kernel) - factor) - (kernel_size - 1) | |
| pad0 = (p + 1) // 2 + factor - 1 | |
| pad1 = p // 2 + 1 | |
| self.blur = Blur(blur_kernel, pad=(pad0, pad1), upsample_factor=factor) | |
| if downsample: | |
| factor = 2 | |
| p = (len(blur_kernel) - factor) + (kernel_size - 1) | |
| pad0 = (p + 1) // 2 | |
| pad1 = p // 2 | |
| self.blur = Blur(blur_kernel, pad=(pad0, pad1)) | |
| fan_in = in_channel * kernel_size ** 2 | |
| self.scale = 1 / math.sqrt(fan_in) | |
| self.padding = kernel_size // 2 | |
| self.weight = nn.Parameter(torch.randn(1, out_channel, in_channel, kernel_size, kernel_size)) | |
| self.modulation = EqualLinear(style_dim, in_channel, bias_init=1) | |
| self.demodulate = demodulate | |
| def __repr__(self): | |
| return ( | |
| f'{self.__class__.__name__}({self.in_channel}, {self.out_channel}, {self.kernel_size}, ' | |
| f'upsample={self.upsample}, downsample={self.downsample})' | |
| ) | |
| def forward(self, input, style): | |
| batch, in_channel, height, width = input.shape | |
| style = self.modulation(style).view(batch, 1, in_channel, 1, 1) | |
| weight = self.scale * self.weight * style | |
| if self.demodulate: | |
| demod = torch.rsqrt(weight.pow(2).sum([2, 3, 4]) + 1e-8) | |
| weight = weight * demod.view(batch, self.out_channel, 1, 1, 1) | |
| weight = weight.view(batch * self.out_channel, in_channel, self.kernel_size, self.kernel_size) | |
| if self.upsample: | |
| input = input.view(1, batch * in_channel, height, width) | |
| weight = weight.view(batch, self.out_channel, in_channel, self.kernel_size, self.kernel_size) | |
| weight = weight.transpose(1, 2).reshape(batch * in_channel, self.out_channel, self.kernel_size, | |
| self.kernel_size) | |
| out = F.conv_transpose2d(input, weight, padding=0, stride=2, groups=batch) | |
| _, _, height, width = out.shape | |
| out = out.view(batch, self.out_channel, height, width) | |
| out = self.blur(out) | |
| elif self.downsample: | |
| input = self.blur(input) | |
| _, _, height, width = input.shape | |
| input = input.view(1, batch * in_channel, height, width) | |
| out = F.conv2d(input, weight, padding=0, stride=2, groups=batch) | |
| _, _, height, width = out.shape | |
| out = out.view(batch, self.out_channel, height, width) | |
| else: | |
| input = input.view(1, batch * in_channel, height, width) | |
| out = F.conv2d(input, weight, padding=self.padding, groups=batch) | |
| _, _, height, width = out.shape | |
| out = out.view(batch, self.out_channel, height, width) | |
| return out | |
| class ConstantInput(nn.Module): | |
| def __init__(self, channel, size=4): | |
| super().__init__() | |
| self.input = nn.Parameter(torch.randn(1, channel, size, size)) | |
| def forward(self, input): | |
| batch = input.shape[0] | |
| out = self.input.repeat(batch, 1, 1, 1) | |
| return out | |
| class StyledConv(nn.Module): | |
| def __init__(self, in_channel, out_channel, kernel_size, style_dim, upsample=False, demodulate=True): | |
| super().__init__() | |
| self.conv = ModulatedConv2d( | |
| in_channel, | |
| out_channel, | |
| kernel_size, | |
| style_dim, | |
| upsample=upsample, | |
| blur_kernel=[1,3,3,1], | |
| demodulate=demodulate, | |
| ) | |
| self.activate = FusedLeakyReLU(out_channel) | |
| def forward(self, input, style): | |
| out = self.conv(input, style) | |
| out = self.activate(out) | |
| return out | |
| class ToRGB(nn.Module): | |
| def __init__(self, in_channel, upsample=True, blur_kernel=[1, 3, 3, 1]): | |
| super().__init__() | |
| self.upsample = upsample | |
| if upsample: | |
| self.up = Upsample(blur_kernel) | |
| self.conv = ConvLayer(in_channel, 3, 1) | |
| self.bias = nn.Parameter(torch.zeros(1, 3, 1, 1)) | |
| def forward(self, input, skip=None): | |
| out = self.conv(input) | |
| out = out + self.bias | |
| if skip is not None: | |
| skip = self.up(skip) | |
| out = out + skip | |
| return out | |
| class ToFlow(nn.Module): | |
| def __init__(self, in_channel, style_dim, upsample=True, blur_kernel=[1, 3, 3, 1]): | |
| super().__init__() | |
| self.upsample = upsample | |
| if upsample: | |
| self.up = Upsample(blur_kernel) | |
| self.conv = ModulatedConv2d(in_channel, 3, 1, style_dim, demodulate=False) | |
| self.bias = nn.Parameter(torch.zeros(1, 3, 1, 1)) | |
| def forward(self, h, style, feat, skip=None): | |
| out = self.conv(h, style) | |
| out = out + self.bias | |
| if skip is not None: | |
| if self.upsample: | |
| skip = self.up(skip) | |
| out = out + skip | |
| xs = torch.linspace(-1, 1, out.size(2)).to(h.device) | |
| xs = torch.meshgrid(xs, xs, indexing='xy') | |
| xs = torch.stack(xs, 2) | |
| xs = xs.unsqueeze(0).repeat(out.size(0), 1, 1, 1) | |
| sampler = torch.tanh(out[:, 0:2, :, :]) | |
| mask = torch.sigmoid(out[:, 2:3, :, :]) | |
| flow = sampler.permute(0, 2, 3, 1) + xs | |
| feat_warp = F.grid_sample(feat, flow, align_corners=True) * mask | |
| h = feat_warp + (1 - mask) * h | |
| #return h, out | |
| return feat_warp, h, out | |
| class Direction(nn.Module): | |
| def __init__(self, style_dim, motion_dim): | |
| super(Direction, self).__init__() | |
| self.weight = nn.Parameter(torch.randn(style_dim, motion_dim)) | |
| def forward(self, input): | |
| # input: (bs*t) x 512 | |
| weight = self.weight + 1e-8 | |
| Q, R = torch.linalg.qr(weight) # get eignvector, orthogonal [n1, n2, n3, n4] | |
| input_diag = torch.diag_embed(input) # alpha, diagonal matrix | |
| out = torch.matmul(input_diag, Q.T) | |
| out = torch.sum(out, dim=1) | |
| return out | |