Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,27 +1,35 @@
|
|
| 1 |
-
from fastapi import FastAPI
|
| 2 |
from pydantic import BaseModel
|
| 3 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 4 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
app = FastAPI()
|
| 7 |
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 11 |
-
model = AutoModelForCausalLM.from_pretrained(model_id)
|
| 12 |
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
|
|
|
| 16 |
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
|
|
|
|
|
|
|
|
|
| 21 |
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
inputs = tokenizer(prompt.text, return_tensors="pt").to(device)
|
| 25 |
-
outputs = model.generate(**inputs, max_new_tokens=prompt.max_new_tokens)
|
| 26 |
-
generated = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 27 |
-
return {"response": generated}
|
|
|
|
| 1 |
+
from fastapi import FastAPI
|
| 2 |
from pydantic import BaseModel
|
|
|
|
| 3 |
import torch
|
| 4 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 5 |
+
|
| 6 |
+
# Initialisera modellen och tokenizern
|
| 7 |
+
model_name = "AI-Sweden-Models/gpt-sw3-126m-instruct"
|
| 8 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
| 9 |
|
| 10 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 11 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
| 12 |
+
model.to(device)
|
| 13 |
+
model.eval()
|
| 14 |
+
|
| 15 |
+
# FastAPI-applikationen
|
| 16 |
app = FastAPI()
|
| 17 |
|
| 18 |
+
class UserInput(BaseModel):
|
| 19 |
+
prompt: str
|
|
|
|
|
|
|
| 20 |
|
| 21 |
+
@app.post("/generate/")
|
| 22 |
+
async def generate_response(user_input: UserInput):
|
| 23 |
+
prompt = f"<|endoftext|><s>\nUser:\n{user_input.prompt}\n<s>\nBot:"
|
| 24 |
+
input_ids = tokenizer(prompt, return_tensors="pt")["input_ids"].to(device)
|
| 25 |
|
| 26 |
+
generated_token_ids = model.generate(
|
| 27 |
+
inputs=input_ids,
|
| 28 |
+
max_new_tokens=100,
|
| 29 |
+
do_sample=True,
|
| 30 |
+
temperature=0.6,
|
| 31 |
+
top_p=1
|
| 32 |
+
)[0]
|
| 33 |
|
| 34 |
+
generated_text = tokenizer.decode(generated_token_ids[len(input_ids[0]):-1], skip_special_tokens=True)
|
| 35 |
+
return {"response": generated_text.strip()}
|
|
|
|
|
|
|
|
|
|
|
|