Spaces:
Runtime error
Runtime error
Initial commit :tada:
Browse files
app.py
ADDED
|
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import requests
|
| 2 |
+
import numpy as np
|
| 3 |
+
import cv2 as cv2
|
| 4 |
+
from PIL import Image
|
| 5 |
+
|
| 6 |
+
import torch
|
| 7 |
+
import torch.nn.functional as F
|
| 8 |
+
import open_clip
|
| 9 |
+
|
| 10 |
+
import gradio as gr
|
| 11 |
+
|
| 12 |
+
from legrad import LeWrapper, LePreprocess
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 16 |
+
layer_index = -2 # will run on cpu
|
| 17 |
+
image_size = 448
|
| 18 |
+
# ---------- Init CLIP Model ----------
|
| 19 |
+
model_name = 'ViT-B-16'
|
| 20 |
+
pretrained = 'laion2b_s34b_b88k'
|
| 21 |
+
patch_size = 16
|
| 22 |
+
|
| 23 |
+
model, _, preprocess = open_clip.create_model_and_transforms(model_name, pretrained=pretrained, device=device)
|
| 24 |
+
tokenizer = open_clip.get_tokenizer(model_name)
|
| 25 |
+
|
| 26 |
+
# ---------- Apply LeGrad's wrappers ----------
|
| 27 |
+
model = LeWrapper(model)
|
| 28 |
+
preprocess = LePreprocess(preprocess=preprocess, image_size=image_size)
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
# ---------- Function to load image from URL ----------
|
| 32 |
+
def change_to_url(url):
|
| 33 |
+
img_pil = Image.open(requests.get(url, stream=True).raw).convert('RGB')
|
| 34 |
+
return img_pil
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
def _get_text_embedding(model, tokenizer, classes: list, device):
|
| 38 |
+
prompts = [f'a photo of a {cls}.' for cls in classes]
|
| 39 |
+
|
| 40 |
+
tokenized_prompts = tokenizer(prompts).to(device)
|
| 41 |
+
|
| 42 |
+
text_embedding = model.encode_text(tokenized_prompts)
|
| 43 |
+
text_embedding = F.normalize(text_embedding, dim=-1)
|
| 44 |
+
return text_embedding.unsqueeze(0)
|
| 45 |
+
|
| 46 |
+
# ---------- Function to convert logits to heatmaps ----------
|
| 47 |
+
def logits_to_heatmaps(logits, image_cv):
|
| 48 |
+
logits = logits[0, 0].detach().cpu().numpy()
|
| 49 |
+
logits = (logits * 255).astype('uint8')
|
| 50 |
+
heat_map = cv2.applyColorMap(logits, cv2.COLORMAP_JET)
|
| 51 |
+
viz = 0.4 * image_cv + 0.6 * heat_map
|
| 52 |
+
viz = cv2.cvtColor(viz.astype('uint8'), cv2.COLOR_BGR2RGB)
|
| 53 |
+
return viz
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
# ---------- Main visualization function ----------
|
| 57 |
+
def viz_func(url, image, text_query):
|
| 58 |
+
image_torch = preprocess(image).unsqueeze(0).to(device)
|
| 59 |
+
text_emb = _get_text_embedding(model, tokenizer, classes=[text_query], device=device)
|
| 60 |
+
|
| 61 |
+
# ------- Get LeGrad output -------
|
| 62 |
+
logits_legrad = model.compute_legrad(image=image_torch, text_embedding=text_emb)
|
| 63 |
+
# ------- Get Heatmpas -------
|
| 64 |
+
image_cv = cv2.cvtColor(np.array(image.resize((image_size, image_size))), cv2.COLOR_RGB2BGR)
|
| 65 |
+
|
| 66 |
+
viz_legrad = logits_to_heatmaps(logits=logits_legrad, image_cv=image_cv)
|
| 67 |
+
return viz_legrad
|
| 68 |
+
|
| 69 |
+
inputs = [
|
| 70 |
+
gr.Textbox(label="Paste the url to the selected image"),
|
| 71 |
+
gr.Image(type="pil", interactive=True, label='Select An Image'),
|
| 72 |
+
gr.Textbox(label="Text query"),
|
| 73 |
+
]
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
with gr.Blocks(css="#gradio-app-title { text-align: center; }") as demo:
|
| 77 |
+
gr.Markdown(
|
| 78 |
+
"""
|
| 79 |
+
# **LeGrad: An Explainability Method for Vision Transformers via Feature Formation Sensitivity**
|
| 80 |
+
### This demo that showcases LeGrad method to visualize the important regions in an image that correspond to a given text query.
|
| 81 |
+
The model used is OpenCLIP-ViT-B-16 (weights: `laion2b_s34b_b88k`)
|
| 82 |
+
"""
|
| 83 |
+
)
|
| 84 |
+
with gr.Row():
|
| 85 |
+
with gr.Column():
|
| 86 |
+
gr.Markdown('# Select An Image')
|
| 87 |
+
selected_image = gr.Image(type="pil", interactive=True, label='')
|
| 88 |
+
gr.Markdown('## Paste the url to the selected image')
|
| 89 |
+
url_query = gr.Textbox(label="")
|
| 90 |
+
gr.Markdown('# Create your Own query')
|
| 91 |
+
text_query = gr.Textbox(label='')
|
| 92 |
+
run_button = gr.Button(icon='https://cdn-icons-png.flaticon.com/512/3348/3348036.png')
|
| 93 |
+
|
| 94 |
+
inputs[0].change(fn=change_to_url, outputs=inputs[1], inputs=inputs[0])
|
| 95 |
+
gr.Markdown('## LeGrad Explanation')
|
| 96 |
+
le_grad_output = gr.Image(label='LeGrad')
|
| 97 |
+
|
| 98 |
+
run_button.click(fn=viz_func,
|
| 99 |
+
inputs=[url_query, selected_image, text_query],
|
| 100 |
+
outputs=[le_grad_output])
|
| 101 |
+
|
| 102 |
+
with gr.Column():
|
| 103 |
+
gr.Markdown('# Select a Premade Example')
|
| 104 |
+
gr.Examples(
|
| 105 |
+
examples=[
|
| 106 |
+
["gradio_app/assets/cats_remote_control.jpeg", "cat"],
|
| 107 |
+
["gradio_app/assets/cats_remote_control.jpeg", "remote control"],
|
| 108 |
+
["gradio_app/assets/la_baguette.webp", "la baguette"],
|
| 109 |
+
["gradio_app/assets/la_baguette.webp", "beret"],
|
| 110 |
+
["gradio_app/assets/pokemons.jpeg", "Pikachu"],
|
| 111 |
+
["gradio_app/assets/pokemons.jpeg", "Bulbasaur"],
|
| 112 |
+
["gradio_app/assets/pokemons.jpeg", "Charmander"],
|
| 113 |
+
["gradio_app/assets/pokemons.jpeg", "Pokemons"],
|
| 114 |
+
],
|
| 115 |
+
inputs=[selected_image, text_query],
|
| 116 |
+
label=''
|
| 117 |
+
)
|
| 118 |
+
|
| 119 |
+
demo.queue()
|
| 120 |
+
demo.launch()
|