Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,153 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Optimised NeMo Parakeet-TDT streaming demo for CPU-only Hugging Face Spaces
|
| 3 |
+
"""
|
| 4 |
+
|
| 5 |
+
import os, time, threading, queue, logging
|
| 6 |
+
import numpy as np
|
| 7 |
+
import gradio as gr
|
| 8 |
+
from scipy import signal
|
| 9 |
+
import torch
|
| 10 |
+
from nemo.collections.asr.models import ASRModel
|
| 11 |
+
|
| 12 |
+
# ββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 13 |
+
# General CPU settings (2 vCPU space)
|
| 14 |
+
# ββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 15 |
+
os.environ["OMP_NUM_THREADS"] = "2" # One MKL/OpenMP thread per vCPU
|
| 16 |
+
torch.set_num_threads(2)
|
| 17 |
+
torch.backends.quantized.engine = "fbgemm" # Fastest INT8 kernels on x86
|
| 18 |
+
|
| 19 |
+
# ββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 20 |
+
# Logging
|
| 21 |
+
# ββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 22 |
+
logging.basicConfig(
|
| 23 |
+
level=logging.INFO,
|
| 24 |
+
format="%(asctime)s - %(message)s",
|
| 25 |
+
datefmt="%H:%M:%S",
|
| 26 |
+
)
|
| 27 |
+
logger = logging.getLogger("asr_app")
|
| 28 |
+
|
| 29 |
+
# ββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 30 |
+
# Constants
|
| 31 |
+
# ββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 32 |
+
SR = 16_000 # Model sample-rate
|
| 33 |
+
CHUNK_SECONDS = 4 # seconds per inference window
|
| 34 |
+
CHUNK_SAMPLES = SR * CHUNK_SECONDS
|
| 35 |
+
|
| 36 |
+
# ββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 37 |
+
# ASR Application
|
| 38 |
+
# ββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 39 |
+
class ASRApp:
|
| 40 |
+
def __init__(self):
|
| 41 |
+
self.audio_queue = queue.Queue(maxsize=100)
|
| 42 |
+
self.transcript_queue = queue.Queue()
|
| 43 |
+
self.transcript_list = []
|
| 44 |
+
self._load_model()
|
| 45 |
+
self._start_worker()
|
| 46 |
+
|
| 47 |
+
# ---------- helpers ----------
|
| 48 |
+
def _log(self, func: str, msg: str):
|
| 49 |
+
logger.info(
|
| 50 |
+
f"{func} | audio_q={self.audio_queue.qsize():02}, "
|
| 51 |
+
f"txt_q={self.transcript_queue.qsize():02} | {msg}"
|
| 52 |
+
)
|
| 53 |
+
|
| 54 |
+
# ---------- model ----------
|
| 55 |
+
def _load_model(self):
|
| 56 |
+
self._log("load_model", "loading Parakeet-TDT-0.6B-V2 (CPU)β¦")
|
| 57 |
+
t0 = time.time()
|
| 58 |
+
model = ASRModel.from_pretrained(
|
| 59 |
+
model_name="nvidia/parakeet-tdt-0.6b-v2",
|
| 60 |
+
map_location="cpu",
|
| 61 |
+
)
|
| 62 |
+
model.eval() # inference mode
|
| 63 |
+
# ---- dynamic INT8 quantisation ----
|
| 64 |
+
try:
|
| 65 |
+
model = torch.quantization.quantize_dynamic(
|
| 66 |
+
model,
|
| 67 |
+
{torch.nn.Linear, torch.nn.LSTM, torch.nn.GRU},
|
| 68 |
+
dtype=torch.qint8,
|
| 69 |
+
)
|
| 70 |
+
self._log("load_model", "INT8 quantisation applied")
|
| 71 |
+
except Exception as e:
|
| 72 |
+
self._log("load_model", f"quantisation skipped ({e})")
|
| 73 |
+
self.asr_model = model
|
| 74 |
+
self._log("load_model", f"model ready in {time.time()-t0:.1f}s")
|
| 75 |
+
# warm-up (1 Γ 1 s of zeros)
|
| 76 |
+
with torch.inference_mode():
|
| 77 |
+
_ = self.asr_model.transcribe(
|
| 78 |
+
[np.zeros(SR, dtype=np.float32)]
|
| 79 |
+
)
|
| 80 |
+
self._log("load_model", "warm-up done")
|
| 81 |
+
|
| 82 |
+
# ---------- threading ----------
|
| 83 |
+
def _start_worker(self):
|
| 84 |
+
threading.Thread(
|
| 85 |
+
target=self._worker,
|
| 86 |
+
daemon=True,
|
| 87 |
+
).start()
|
| 88 |
+
|
| 89 |
+
def _worker(self):
|
| 90 |
+
buf = np.array([], dtype=np.float32)
|
| 91 |
+
while True:
|
| 92 |
+
try:
|
| 93 |
+
# accumulate until CHUNK_SAMPLES
|
| 94 |
+
while len(buf) < CHUNK_SAMPLES:
|
| 95 |
+
buf = np.concatenate([buf, self.audio_queue.get()])
|
| 96 |
+
self._log("_worker", f"buffer={len(buf)}")
|
| 97 |
+
chunk, buf = buf[:CHUNK_SAMPLES], buf[CHUNK_SAMPLES:]
|
| 98 |
+
self._log("_worker", f"β transcribe {len(chunk)} samples")
|
| 99 |
+
t0 = time.time()
|
| 100 |
+
with torch.inference_mode():
|
| 101 |
+
out = self.asr_model.transcribe([chunk])
|
| 102 |
+
dur = time.time() - t0
|
| 103 |
+
text = out[0].text
|
| 104 |
+
self._log("_worker", f"inference {dur:.2f}s β β{text}β")
|
| 105 |
+
self.transcript_queue.put(text)
|
| 106 |
+
except Exception as e:
|
| 107 |
+
self._log("_worker", f"ASR error: {e}")
|
| 108 |
+
|
| 109 |
+
# ---------- audio preprocessing ----------
|
| 110 |
+
def _preprocess(self, audio):
|
| 111 |
+
sr, y = audio
|
| 112 |
+
if y.ndim > 1:
|
| 113 |
+
y = y.mean(axis=1)
|
| 114 |
+
if sr != SR:
|
| 115 |
+
# resample faster with polyphase filter
|
| 116 |
+
y = signal.resample_poly(y, SR, sr)
|
| 117 |
+
y = y.astype(np.float32)
|
| 118 |
+
y /= (np.abs(y).max() + 1e-9)
|
| 119 |
+
return y
|
| 120 |
+
|
| 121 |
+
# ---------- Gradio stream callback ----------
|
| 122 |
+
def stream_fn(self, audio):
|
| 123 |
+
self._log("stream_fn", "audio arrived")
|
| 124 |
+
self.audio_queue.put(self._preprocess(audio))
|
| 125 |
+
while not self.transcript_queue.empty():
|
| 126 |
+
self.transcript_list.append(self.transcript_queue.get())
|
| 127 |
+
return (
|
| 128 |
+
" ".join(self.transcript_list)
|
| 129 |
+
if self.transcript_list
|
| 130 |
+
else "β¦listeningβ¦"
|
| 131 |
+
)
|
| 132 |
+
|
| 133 |
+
# ββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 134 |
+
# Gradio UI
|
| 135 |
+
# ββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 136 |
+
asr_app = ASRApp()
|
| 137 |
+
with gr.Blocks() as demo:
|
| 138 |
+
mic = gr.Audio(
|
| 139 |
+
sources=["microphone"],
|
| 140 |
+
type="numpy",
|
| 141 |
+
streaming=True,
|
| 142 |
+
label="Microphone",
|
| 143 |
+
)
|
| 144 |
+
out = gr.Textbox(label="Transcription")
|
| 145 |
+
mic.stream(
|
| 146 |
+
fn=asr_app.stream_fn,
|
| 147 |
+
inputs=mic,
|
| 148 |
+
outputs=out,
|
| 149 |
+
stream_every=0.5, # β UI calls per second
|
| 150 |
+
)
|
| 151 |
+
|
| 152 |
+
asr_app._log("main", "launching UI")
|
| 153 |
+
demo.launch()
|