Spaces:
Running
Running
File size: 26,175 Bytes
5255e37 80323f9 5255e37 80323f9 5255e37 80323f9 5255e37 80323f9 772b2e0 80323f9 5255e37 80323f9 5255e37 80323f9 5255e37 80323f9 5255e37 80323f9 5255e37 80323f9 5255e37 772b2e0 80323f9 5255e37 80323f9 5255e37 80323f9 5255e37 80323f9 5255e37 80323f9 5255e37 80323f9 5255e37 80323f9 5255e37 80323f9 5255e37 80323f9 772b2e0 80323f9 772b2e0 5255e37 80323f9 5255e37 80323f9 772b2e0 80323f9 772b2e0 80323f9 5255e37 80323f9 5255e37 80323f9 5255e37 80323f9 5255e37 80323f9 5255e37 80323f9 5255e37 80323f9 5255e37 80323f9 772b2e0 80323f9 772b2e0 5255e37 80323f9 772b2e0 80323f9 772b2e0 80323f9 5255e37 c2e82c6 5255e37 c2e82c6 5255e37 80323f9 772b2e0 80323f9 5255e37 80323f9 5255e37 80323f9 772b2e0 80323f9 772b2e0 c2e82c6 772b2e0 c2e82c6 80323f9 772b2e0 80323f9 772b2e0 80323f9 5255e37 80323f9 5255e37 80323f9 c2e82c6 80323f9 c2e82c6 5255e37 c2e82c6 5255e37 80323f9 5255e37 80323f9 5255e37 80323f9 5255e37 80323f9 5255e37 80323f9 5255e37 80323f9 5255e37 80323f9 5255e37 80323f9 5255e37 80323f9 5255e37 80323f9 5255e37 80323f9 5255e37 80323f9 5255e37 80323f9 5255e37 80323f9 5255e37 80323f9 5255e37 80323f9 5255e37 80323f9 5255e37 80323f9 5255e37 80323f9 5255e37 80323f9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 |
import math
import warnings
import gradio as gr
import numpy as np
import pandas as pd
import torch
import torch.nn.functional as F
from transformers import AutoModelForCausalLM, AutoModelForMaskedLM, AutoTokenizer
try:
from config import (
DEFAULT_MODELS,
ERROR_MESSAGES,
MODEL_SETTINGS,
PROCESSING_SETTINGS,
UI_SETTINGS,
VIZ_SETTINGS,
)
except ImportError:
# Fallback configuration if config.py is not available
DEFAULT_MODELS = {
"decoder": ["gpt2", "distilgpt2"],
"encoder": ["bert-base-uncased", "distilbert-base-uncased"],
}
MODEL_SETTINGS = {"max_length": 512}
VIZ_SETTINGS = {
"max_perplexity_display": 5000.0,
"color_scheme": {
"low_perplexity": {"r": 46, "g": 204, "b": 113},
"medium_perplexity": {"r": 241, "g": 196, "b": 15},
"high_perplexity": {"r": 231, "g": 76, "b": 60},
"background_alpha": 0.7,
"border_alpha": 0.9,
},
"thresholds": {"low_threshold": 0.3, "high_threshold": 0.7},
"displacy_options": {"ents": ["PP"], "colors": {}},
}
PROCESSING_SETTINGS = {
"epsilon": 1e-10,
"default_mask_probability": 0.15,
"min_mask_probability": 0.05,
"max_mask_probability": 0.5,
"default_min_samples": 10,
"min_samples_range": (5, 50),
}
UI_SETTINGS = {
"title": "π Perplexity Viewer",
"description": "Visualize per-token perplexity using color gradients.",
"examples": [
{
"text": "The quick brown fox jumps over the lazy dog.",
"model": "gpt2",
"type": "decoder",
"mask_prob": 0.15,
"min_samples": 10,
},
{
"text": "The capital of France is Paris.",
"model": "bert-base-uncased",
"type": "encoder",
"mask_prob": 0.15,
"min_samples": 10,
},
{
"text": "Quantum entanglement defies classical physics intuition completely.",
"model": "distilgpt2",
"type": "decoder",
"mask_prob": 0.15,
"min_samples": 10,
},
{
"text": "Machine learning requires large datasets for training.",
"model": "distilbert-base-uncased",
"type": "encoder",
"mask_prob": 0.2,
"min_samples": 15,
},
{
"text": "Artificial intelligence transforms modern computing paradigms.",
"model": "bert-base-uncased",
"type": "encoder",
"mask_prob": 0.1,
"min_samples": 20,
},
],
}
ERROR_MESSAGES = {
"empty_text": "Please enter some text to analyze.",
"model_load_error": "Error loading model {model_name}: {error}",
"processing_error": "Error processing text: {error}",
}
warnings.filterwarnings("ignore")
# Global variables to cache models
cached_models = {}
cached_tokenizers = {}
def is_special_character(token):
"""
Check if a token is only special characters/punctuation.
Args:
token: The token string to check
Returns:
True if token contains only special characters, False otherwise
Examples:
>>> is_special_character(".")
True
>>> is_special_character(",")
True
>>> is_special_character("hello")
False
>>> is_special_character("Δ ,")
True
>>> is_special_character("##!")
True
"""
# Clean up common tokenizer artifacts
clean_token = (
token.replace("</w>", "")
.replace("##", "")
.replace("Δ ", "")
.replace("Δ", "")
.strip()
)
# Check if empty after cleaning
if not clean_token:
return True
# Check if token contains only punctuation and special characters
return all(not c.isalnum() for c in clean_token)
def load_model_and_tokenizer(model_name, model_type):
"""Load and cache model and tokenizer"""
cache_key = f"{model_name}_{model_type}"
if cache_key not in cached_models:
try:
tokenizer = AutoTokenizer.from_pretrained(model_name)
# Add pad token if it doesn't exist
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
if model_type == "decoder":
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.float16
if torch.cuda.is_available()
else torch.float32,
device_map="auto" if torch.cuda.is_available() else None,
trust_remote_code=True,
)
else: # encoder
model = AutoModelForMaskedLM.from_pretrained(
model_name,
torch_dtype=torch.float16
if torch.cuda.is_available()
else torch.float32,
device_map="auto" if torch.cuda.is_available() else None,
trust_remote_code=True,
)
model.eval() # Set to evaluation mode
cached_models[cache_key] = model
cached_tokenizers[cache_key] = tokenizer
return model, tokenizer
except Exception as e:
raise gr.Error(
ERROR_MESSAGES["model_load_error"].format(
model_name=model_name, error=str(e)
)
)
return cached_models[cache_key], cached_tokenizers[cache_key]
def calculate_decoder_perplexity(text, model, tokenizer):
"""Calculate perplexity for decoder models (like GPT)"""
device = next(model.parameters()).device
# Tokenize the text
inputs = tokenizer(
text,
return_tensors="pt",
truncation=True,
max_length=MODEL_SETTINGS["max_length"],
)
input_ids = inputs.input_ids.to(device)
if input_ids.size(1) < 2:
raise gr.Error("Text is too short for perplexity calculation.")
# Calculate overall perplexity
with torch.no_grad():
outputs = model(input_ids, labels=input_ids)
loss = outputs.loss
perplexity = torch.exp(loss).item()
# Get token-level perplexities
with torch.no_grad():
outputs = model(input_ids)
logits = outputs.logits
# Shift logits and labels for next token prediction
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = input_ids[..., 1:].contiguous()
# Calculate per-token losses
loss_fct = torch.nn.CrossEntropyLoss(reduction="none")
token_losses = loss_fct(
shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)
)
token_perplexities = torch.exp(token_losses).cpu().numpy()
# Get tokens (excluding the first one since we predict next tokens)
tokens = tokenizer.convert_ids_to_tokens(input_ids[0][1:])
# Clean up tokens for display and filter special characters
cleaned_tokens = []
filtered_perplexities = []
for token, token_perp in zip(tokens, token_perplexities):
# Skip special characters
if is_special_character(token):
continue
if token.startswith("Δ "):
cleaned_tokens.append(token[1:]) # Remove Δ prefix
elif token.startswith("##"):
cleaned_tokens.append(token[2:]) # Remove ## prefix
else:
cleaned_tokens.append(token)
filtered_perplexities.append(token_perp)
return perplexity, cleaned_tokens, np.array(filtered_perplexities)
def calculate_encoder_perplexity(
text, model, tokenizer, mask_probability=0.15, min_samples_per_token=10
):
"""Calculate pseudo-perplexity for encoder models using statistical sampling with multiple token masking"""
device = next(model.parameters()).device
# Tokenize the text
inputs = tokenizer(
text,
return_tensors="pt",
truncation=True,
max_length=MODEL_SETTINGS["max_length"],
)
input_ids = inputs.input_ids.to(device)
if input_ids.size(1) < 3: # Need at least [CLS] + 1 token + [SEP]
raise gr.Error("Text is too short for MLM perplexity calculation.")
seq_length = input_ids.size(1)
special_token_ids = {
tokenizer.cls_token_id,
tokenizer.sep_token_id,
tokenizer.pad_token_id,
}
# Get content token indices (excluding special tokens)
content_token_indices = [
i for i in range(seq_length) if input_ids[0, i].item() not in special_token_ids
]
if not content_token_indices:
raise gr.Error("No content tokens found for analysis.")
# Initialize storage for per-token perplexity samples
token_perplexity_samples = {idx: [] for idx in content_token_indices}
# Calculate overall average perplexity and collect samples
all_losses = []
max_iterations = (
min_samples_per_token * 50
) # Safety limit to prevent infinite loops
iteration = 0
with torch.no_grad():
while iteration < max_iterations:
# Create a copy for masking
masked_input = input_ids.clone()
masked_indices = []
# Randomly mask tokens based on mask_probability
for idx in content_token_indices:
if torch.rand(1).item() < mask_probability:
masked_indices.append(idx)
masked_input[0, idx] = tokenizer.mask_token_id
# Skip if no tokens were masked
if not masked_indices:
iteration += 1
continue
# Get model predictions
outputs = model(masked_input)
predictions = outputs.logits
# Calculate perplexity for each masked token
for idx in masked_indices:
original_token_id = input_ids[0, idx]
pred_scores = predictions[0, idx]
prob = F.softmax(pred_scores, dim=-1)[original_token_id]
loss = -torch.log(prob + PROCESSING_SETTINGS["epsilon"])
perplexity = math.exp(loss.item())
# Store sample for this token
token_perplexity_samples[idx].append(perplexity)
all_losses.append(loss.item())
iteration += 1
# Check if we have enough samples for all tokens
min_samples_collected = min(
len(samples) for samples in token_perplexity_samples.values()
)
if min_samples_collected >= min_samples_per_token:
break
# Calculate overall average perplexity
if all_losses:
avg_loss = np.mean(all_losses)
overall_perplexity = math.exp(avg_loss)
else:
overall_perplexity = float("inf")
# Calculate mean perplexity per token for visualization
tokens = tokenizer.convert_ids_to_tokens(input_ids[0])
token_perplexities = []
for i in range(len(tokens)):
if input_ids[0, i].item() in special_token_ids:
token_perplexities.append(1.0) # Low perplexity for special tokens
elif i in token_perplexity_samples and token_perplexity_samples[i]:
# Use mean of collected samples
token_perplexities.append(np.mean(token_perplexity_samples[i]))
else:
# Fallback if no samples collected (shouldn't happen with proper min_samples)
token_perplexities.append(2.0)
# Clean up tokens for display and filter special characters
cleaned_tokens = []
filtered_perplexities = []
for idx, (token, token_perp) in enumerate(zip(tokens, token_perplexities)):
# Skip special characters and tokenizer special tokens
if input_ids[0, idx].item() in special_token_ids:
continue
if is_special_character(token):
continue
if token.startswith("##"):
cleaned_tokens.append(token[2:])
else:
cleaned_tokens.append(token)
filtered_perplexities.append(token_perp)
return overall_perplexity, cleaned_tokens, np.array(filtered_perplexities)
def perplexity_to_color(perplexity, min_perp=1, max_perp=1000):
"""
Convert perplexity to a color on a gradient from green to red.
Uses logarithmic scale for better visual distribution.
Args:
perplexity: The perplexity value
min_perp: Minimum perplexity (maps to green)
max_perp: Maximum perplexity (maps to red)
Returns:
Tuple of (r, g, b) values as integers (0-255)
"""
# Clamp perplexity to range
perp = max(min_perp, min(max_perp, perplexity))
# Use logarithmic scale for better distribution
log_min = math.log(min_perp)
log_max = math.log(max_perp)
log_perp = math.log(perp)
# Normalize to 0-1 range
normalized = (log_perp - log_min) / (log_max - log_min)
# Create color gradient from green to red via yellow
# Green: (0, 178, 0) - HSL(120, 100%, 35%)
# Yellow: (255, 255, 0) - HSL(60, 100%, 50%)
# Red: (255, 0, 0) - HSL(0, 100%, 50%)
if normalized < 0.5:
# Green to Yellow
factor = normalized * 2 # 0 to 1
r = int(0 + factor * 255)
g = int(178 + factor * (255 - 178))
b = 0
else:
# Yellow to Red
factor = (normalized - 0.5) * 2 # 0 to 1
r = 255
g = int(255 * (1 - factor))
b = 0
return (r, g, b)
def create_visualization(tokens, perplexities):
"""Create custom HTML visualization with color-coded perplexities"""
if len(tokens) == 0:
return "<p>No tokens to visualize.</p>"
# Cap perplexities for better visualization
max_perplexity = np.max(perplexities)
# Normalize perplexities to 0-1 range for color mapping
normalized_perplexities = np.clip(perplexities / max_perplexity, 0, 1)
# Create HTML with inline styles for color coding
html_parts = [
'<div style="font-family: Arial, sans-serif; font-size: 16px; line-height: 1.8; padding: 20px; border: 1px solid #ddd; border-radius: 8px; background-color: #fafafa;">',
'<h3 style="margin-top: 0; color: #333;">Per-token Perplexity Visualization</h3>',
'<div style="margin-bottom: 15px;">',
'<span style="font-size: 12px; color: #666;">',
"π’ Low perplexity (confident) β π‘ Medium β π΄ High perplexity (uncertain)",
"</span>",
"</div>",
'<div style="line-height: 2.0;">',
]
for i, (token, perp, norm_perp) in enumerate(
zip(tokens, perplexities, normalized_perplexities)
):
# Skip empty tokens
if not token.strip():
continue
# Skip special characters (already filtered in calculation functions)
if is_special_character(token):
continue
# Clean token for display
# </w>, ##, Δ , Δ
clean_token = (
token.replace("</w>", "")
.replace("##", "")
.replace("Δ ", "")
.replace("Δ", "")
.strip()
)
if not clean_token:
continue
# Add space before token if needed
if i > 0 and clean_token[0] not in ".,!?;:":
html_parts.append(" ")
# Get color thresholds from configuration
# low_thresh = VIZ_SETTINGS.get("thresholds", {}).get("low_threshold", 0.3)
# high_thresh = VIZ_SETTINGS.get("thresholds", {}).get("high_threshold", 0.7)
# Get colors from configuration
# low_color = VIZ_SETTINGS["color_scheme"]["low_perplexity"]
# med_color = VIZ_SETTINGS["color_scheme"]["medium_perplexity"]
# high_color = VIZ_SETTINGS["color_scheme"]["high_perplexity"]
# # Map perplexity to color using configuration
# if norm_perp < low_thresh: # Low perplexity - green
# # Interpolate between green and yellow
# factor = norm_perp / low_thresh
# red = int(low_color["r"] + factor * (med_color["r"] - low_color["r"]))
# green = int(low_color["g"] + factor * (med_color["g"] - low_color["g"]))
# blue = int(low_color["b"] + factor * (med_color["b"] - low_color["b"]))
# elif norm_perp < high_thresh: # Medium perplexity - yellow/orange
# # Interpolate between yellow and red
# factor = (norm_perp - low_thresh) / (high_thresh - low_thresh)
# red = int(med_color["r"] + factor * (high_color["r"] - med_color["r"]))
# green = int(med_color["g"] + factor * (high_color["g"] - med_color["g"]))
# blue = int(med_color["b"] + factor * (high_color["b"] - med_color["b"]))
# else: # High perplexity - red
# # Use high perplexity color, potentially darker for very high values
# factor = min((norm_perp - high_thresh) / (1.0 - high_thresh), 1.0)
# darken = 0.8 - (factor * 0.3) # Darken by up to 30%
# red = int(high_color["r"] * darken)
# green = int(high_color["g"] * darken)
# blue = int(high_color["b"] * darken)
tooltip_text = f"Perplexity: {perp:.3f} (normalized: {norm_perp:.3f})"
# Clamp values
# red = max(0, min(255, red))
# green = max(0, min(255, green))
# blue = max(0, min(255, blue))
# Get alpha values from configuration
bg_alpha = VIZ_SETTINGS["color_scheme"].get("background_alpha", 0.7)
border_alpha = VIZ_SETTINGS["color_scheme"].get("border_alpha", 0.9)
# Get RGB color from perplexity
r, g, b = perplexity_to_color(
perp, min_perp=1, max_perp=VIZ_SETTINGS["max_perplexity_display"]
)
# Create colored span with tooltip
html_parts.append(
f'<span style="'
f"background-color: rgba({r}, {g}, {b}, {bg_alpha}); "
f"color: #000; "
f"padding: 2px 4px; "
f"margin: 1px; "
f"border-radius: 3px; "
f"border: 1px solid rgba({r}, {g}, {b}, {border_alpha}); "
f"font-weight: 500; "
f"cursor: help; "
f"display: inline-block;"
f'" title="{tooltip_text}">{clean_token}</span>'
)
html_parts.extend(
[
"</div>",
'<div style="margin-top: 15px; font-size: 12px; color: #666;">',
f"Max perplexity in visualization: {max_perplexity:.2f} | ",
f"Total tokens: {len(tokens)}",
"</div>",
"</div>",
]
)
return "".join(html_parts)
def process_text(text, model_name, model_type, mask_probability=0.15, min_samples=10):
"""Main processing function"""
if not text.strip():
return ERROR_MESSAGES["empty_text"], "", pd.DataFrame()
try:
# Load model and tokenizer
model, tokenizer = load_model_and_tokenizer(model_name, model_type)
# Calculate perplexity
if model_type == "decoder":
avg_perplexity, tokens, token_perplexities = calculate_decoder_perplexity(
text, model, tokenizer
)
sampling_info = ""
else: # encoder
avg_perplexity, tokens, token_perplexities = calculate_encoder_perplexity(
text, model, tokenizer, mask_probability, min_samples
)
sampling_info = f"**Mask Probability:** {mask_probability:.1%} \n**Min Samples per Token:** {min_samples} \n"
# Create visualization
viz_html = create_visualization(tokens, token_perplexities)
# Create summary
summary = f"""
### Analysis Results
**Model:** `{model_name}`
**Model Type:** {model_type.title()}
**Average Perplexity:** {avg_perplexity:.4f}
**Number of Tokens:** {len(tokens)}
{sampling_info}"""
# Create detailed results table
df = pd.DataFrame(
{"Token": tokens, "Perplexity": [f"{p:.4f}" for p in token_perplexities]}
)
return summary, viz_html, df
except Exception as e:
error_msg = ERROR_MESSAGES["processing_error"].format(error=str(e))
return error_msg, "", pd.DataFrame()
# Create Gradio interface
with gr.Blocks(title=UI_SETTINGS["title"], theme=gr.themes.Soft()) as demo:
gr.Markdown(f"# {UI_SETTINGS['title']}")
gr.Markdown(UI_SETTINGS["description"])
with gr.Row():
with gr.Column(scale=2):
text_input = gr.Textbox(
label="Input Text",
placeholder="Enter the text you want to analyze...",
lines=6,
max_lines=10,
)
with gr.Row():
model_name = gr.Dropdown(
label="Model Name",
choices=DEFAULT_MODELS["decoder"] + DEFAULT_MODELS["encoder"],
value="gpt2",
allow_custom_value=True,
info="Select a model or enter a custom HuggingFace model name",
)
model_type = gr.Radio(
label="Model Type",
choices=["decoder", "encoder"],
value="decoder",
info="Decoder for causal LM, Encoder for masked LM",
)
# Advanced settings for encoder models
with gr.Row():
mask_probability = gr.Slider(
label="Mask Probability",
minimum=PROCESSING_SETTINGS["min_mask_probability"],
maximum=PROCESSING_SETTINGS["max_mask_probability"],
value=PROCESSING_SETTINGS["default_mask_probability"],
step=0.05,
visible=False,
info="Probability of masking each token per iteration (encoder only)",
)
min_samples = gr.Slider(
label="Min Samples per Token",
minimum=PROCESSING_SETTINGS["min_samples_range"][0],
maximum=PROCESSING_SETTINGS["min_samples_range"][1],
value=PROCESSING_SETTINGS["default_min_samples"],
step=5,
visible=False,
info="Minimum perplexity samples to collect per token (encoder only)",
)
analyze_btn = gr.Button(
"π Analyze Perplexity", variant="primary", size="lg"
)
with gr.Column(scale=3):
summary_output = gr.Markdown(label="Summary")
viz_output = gr.HTML(label="Perplexity Visualization")
# Full-width table
with gr.Row():
table_output = gr.Dataframe(
label="Detailed Token Results", interactive=False, wrap=True
)
# Update model dropdown based on type selection
def update_model_choices(model_type):
return gr.update(
choices=DEFAULT_MODELS[model_type], value=DEFAULT_MODELS[model_type][0]
)
def toggle_advanced_settings(model_type):
is_encoder = model_type == "encoder"
return [
gr.update(visible=is_encoder), # mask_probability
gr.update(visible=is_encoder), # min_samples
]
model_type.change(
fn=lambda mt: [update_model_choices(mt)] + toggle_advanced_settings(mt),
inputs=[model_type],
outputs=[model_name, mask_probability, min_samples],
)
# Set up the analysis function
analyze_btn.click(
fn=process_text,
inputs=[text_input, model_name, model_type, mask_probability, min_samples],
outputs=[summary_output, viz_output, table_output],
)
# Add examples
with gr.Accordion("π Example Texts", open=False):
examples_data = [
[
ex["text"],
ex["model"],
ex["type"],
ex.get("mask_prob", 0.15),
ex.get("min_samples", 10),
]
for ex in UI_SETTINGS["examples"]
]
gr.Examples(
examples=examples_data,
inputs=[text_input, model_name, model_type, mask_probability, min_samples],
outputs=[summary_output, viz_output, table_output],
fn=process_text,
cache_examples=False,
label="Click on an example to try it out:",
)
# Add footer with information
gr.Markdown("""
---
### π How it works:
- **Decoder Models** (GPT, etc.): Calculate true perplexity by measuring how well the model predicts the next token
- **Encoder Models** (BERT, etc.): Calculate pseudo-perplexity using statistical sampling with multiple token masking
- **Mask Probability**: For encoder models, controls what fraction of tokens get masked in each iteration
- **Min Samples**: Minimum number of perplexity measurements collected per token for robust statistics
- **Color Coding**: Red = High perplexity (uncertain), Green = Low perplexity (confident)
### β οΈ Notes:
- First model load may take some time
- Models are cached after first use
- Very long texts are truncated to 512 tokens
- GPU acceleration is used when available
- Encoder models use Monte Carlo sampling for robust perplexity estimates
- Higher min samples = more accurate but slower analysis
""")
if __name__ == "__main__":
try:
demo.launch(server_name="0.0.0.0", server_port=7860, show_api=False)
except Exception as e:
print(f"β Failed to launch app: {e}")
print("π‘ Try running with: python run.py")
# Fallback to basic launch
try:
demo.launch()
except Exception as fallback_error:
print(f"β Fallback launch also failed: {fallback_error}")
print("π‘ Try updating Gradio: pip install --upgrade gradio")
|