File size: 26,175 Bytes
5255e37
 
 
80323f9
 
 
5255e37
 
 
 
80323f9
5255e37
 
 
 
 
 
 
 
80323f9
 
 
 
5255e37
80323f9
 
 
772b2e0
80323f9
 
 
 
 
5255e37
80323f9
5255e37
 
80323f9
 
 
 
 
 
 
5255e37
80323f9
 
 
 
 
5255e37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80323f9
 
 
 
5255e37
80323f9
 
 
 
 
 
 
5255e37
772b2e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80323f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5255e37
 
 
80323f9
5255e37
80323f9
 
 
 
5255e37
 
 
80323f9
5255e37
80323f9
 
 
 
 
 
 
 
5255e37
 
 
 
 
80323f9
 
 
5255e37
80323f9
 
 
 
 
5255e37
 
 
 
 
 
80323f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5255e37
 
 
 
80323f9
 
 
 
 
772b2e0
80323f9
772b2e0
 
 
 
 
 
5255e37
80323f9
5255e37
80323f9
 
 
772b2e0
80323f9
772b2e0
80323f9
5255e37
 
 
 
80323f9
 
 
 
5255e37
 
 
 
 
 
80323f9
 
 
 
 
 
5255e37
 
 
 
 
80323f9
 
5255e37
 
 
80323f9
 
 
 
 
 
 
 
 
5255e37
 
 
80323f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5255e37
 
 
80323f9
 
 
 
 
 
 
 
5255e37
80323f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
772b2e0
80323f9
772b2e0
 
 
 
 
 
 
 
5255e37
80323f9
 
 
772b2e0
80323f9
772b2e0
80323f9
5255e37
 
 
 
 
 
 
 
 
 
 
 
c2e82c6
5255e37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c2e82c6
5255e37
 
80323f9
 
 
 
 
 
772b2e0
80323f9
 
 
 
 
 
 
 
 
 
5255e37
 
 
 
80323f9
 
5255e37
 
 
80323f9
 
 
 
772b2e0
 
 
 
80323f9
772b2e0
c2e82c6
772b2e0
 
 
 
 
c2e82c6
80323f9
 
 
 
772b2e0
80323f9
 
 
772b2e0
 
80323f9
 
5255e37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80323f9
 
 
 
5255e37
 
 
80323f9
 
 
 
 
c2e82c6
 
 
 
 
80323f9
 
 
c2e82c6
5255e37
 
 
 
c2e82c6
5255e37
 
 
80323f9
 
 
5255e37
 
 
 
 
 
 
 
 
 
80323f9
 
 
5255e37
80323f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5255e37
 
 
80323f9
 
 
 
 
 
 
5255e37
80323f9
 
 
 
 
 
 
 
 
 
 
5255e37
80323f9
 
 
 
 
 
 
 
5255e37
80323f9
 
 
 
 
 
5255e37
80323f9
 
 
 
 
 
 
 
 
 
 
5255e37
80323f9
 
 
 
 
 
 
 
 
5255e37
80323f9
 
5255e37
 
 
80323f9
 
 
 
 
 
 
 
5255e37
80323f9
 
 
 
5255e37
 
 
80323f9
 
5255e37
80323f9
 
5255e37
80323f9
 
 
 
 
5255e37
80323f9
 
 
 
 
 
5255e37
80323f9
 
 
 
 
5255e37
 
 
 
 
 
 
80323f9
 
 
 
 
 
 
 
 
5255e37
80323f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5255e37
80323f9
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
import math
import warnings

import gradio as gr
import numpy as np
import pandas as pd
import torch
import torch.nn.functional as F
from transformers import AutoModelForCausalLM, AutoModelForMaskedLM, AutoTokenizer

try:
    from config import (
        DEFAULT_MODELS,
        ERROR_MESSAGES,
        MODEL_SETTINGS,
        PROCESSING_SETTINGS,
        UI_SETTINGS,
        VIZ_SETTINGS,
    )
except ImportError:
    # Fallback configuration if config.py is not available
    DEFAULT_MODELS = {
        "decoder": ["gpt2", "distilgpt2"],
        "encoder": ["bert-base-uncased", "distilbert-base-uncased"],
    }
    MODEL_SETTINGS = {"max_length": 512}
    VIZ_SETTINGS = {
        "max_perplexity_display": 5000.0,
        "color_scheme": {
            "low_perplexity": {"r": 46, "g": 204, "b": 113},
            "medium_perplexity": {"r": 241, "g": 196, "b": 15},
            "high_perplexity": {"r": 231, "g": 76, "b": 60},
            "background_alpha": 0.7,
            "border_alpha": 0.9,
        },
        "thresholds": {"low_threshold": 0.3, "high_threshold": 0.7},
        "displacy_options": {"ents": ["PP"], "colors": {}},
    }
    PROCESSING_SETTINGS = {
        "epsilon": 1e-10,
        "default_mask_probability": 0.15,
        "min_mask_probability": 0.05,
        "max_mask_probability": 0.5,
        "default_min_samples": 10,
        "min_samples_range": (5, 50),
    }
    UI_SETTINGS = {
        "title": "πŸ“ˆ Perplexity Viewer",
        "description": "Visualize per-token perplexity using color gradients.",
        "examples": [
            {
                "text": "The quick brown fox jumps over the lazy dog.",
                "model": "gpt2",
                "type": "decoder",
                "mask_prob": 0.15,
                "min_samples": 10,
            },
            {
                "text": "The capital of France is Paris.",
                "model": "bert-base-uncased",
                "type": "encoder",
                "mask_prob": 0.15,
                "min_samples": 10,
            },
            {
                "text": "Quantum entanglement defies classical physics intuition completely.",
                "model": "distilgpt2",
                "type": "decoder",
                "mask_prob": 0.15,
                "min_samples": 10,
            },
            {
                "text": "Machine learning requires large datasets for training.",
                "model": "distilbert-base-uncased",
                "type": "encoder",
                "mask_prob": 0.2,
                "min_samples": 15,
            },
            {
                "text": "Artificial intelligence transforms modern computing paradigms.",
                "model": "bert-base-uncased",
                "type": "encoder",
                "mask_prob": 0.1,
                "min_samples": 20,
            },
        ],
    }
    ERROR_MESSAGES = {
        "empty_text": "Please enter some text to analyze.",
        "model_load_error": "Error loading model {model_name}: {error}",
        "processing_error": "Error processing text: {error}",
    }
warnings.filterwarnings("ignore")

# Global variables to cache models
cached_models = {}
cached_tokenizers = {}


def is_special_character(token):
    """
    Check if a token is only special characters/punctuation.

    Args:
        token: The token string to check

    Returns:
        True if token contains only special characters, False otherwise

    Examples:
        >>> is_special_character(".")
        True
        >>> is_special_character(",")
        True
        >>> is_special_character("hello")
        False
        >>> is_special_character("Δ ,")
        True
        >>> is_special_character("##!")
        True
    """
    # Clean up common tokenizer artifacts
    clean_token = (
        token.replace("</w>", "")
        .replace("##", "")
        .replace("Δ ", "")
        .replace("Ċ", "")
        .strip()
    )

    # Check if empty after cleaning
    if not clean_token:
        return True

    # Check if token contains only punctuation and special characters
    return all(not c.isalnum() for c in clean_token)


def load_model_and_tokenizer(model_name, model_type):
    """Load and cache model and tokenizer"""
    cache_key = f"{model_name}_{model_type}"

    if cache_key not in cached_models:
        try:
            tokenizer = AutoTokenizer.from_pretrained(model_name)

            # Add pad token if it doesn't exist
            if tokenizer.pad_token is None:
                tokenizer.pad_token = tokenizer.eos_token

            if model_type == "decoder":
                model = AutoModelForCausalLM.from_pretrained(
                    model_name,
                    torch_dtype=torch.float16
                    if torch.cuda.is_available()
                    else torch.float32,
                    device_map="auto" if torch.cuda.is_available() else None,
                    trust_remote_code=True,
                )
            else:  # encoder
                model = AutoModelForMaskedLM.from_pretrained(
                    model_name,
                    torch_dtype=torch.float16
                    if torch.cuda.is_available()
                    else torch.float32,
                    device_map="auto" if torch.cuda.is_available() else None,
                    trust_remote_code=True,
                )

            model.eval()  # Set to evaluation mode
            cached_models[cache_key] = model
            cached_tokenizers[cache_key] = tokenizer

            return model, tokenizer
        except Exception as e:
            raise gr.Error(
                ERROR_MESSAGES["model_load_error"].format(
                    model_name=model_name, error=str(e)
                )
            )

    return cached_models[cache_key], cached_tokenizers[cache_key]


def calculate_decoder_perplexity(text, model, tokenizer):
    """Calculate perplexity for decoder models (like GPT)"""
    device = next(model.parameters()).device

    # Tokenize the text
    inputs = tokenizer(
        text,
        return_tensors="pt",
        truncation=True,
        max_length=MODEL_SETTINGS["max_length"],
    )
    input_ids = inputs.input_ids.to(device)

    if input_ids.size(1) < 2:
        raise gr.Error("Text is too short for perplexity calculation.")

    # Calculate overall perplexity
    with torch.no_grad():
        outputs = model(input_ids, labels=input_ids)
        loss = outputs.loss
        perplexity = torch.exp(loss).item()

    # Get token-level perplexities
    with torch.no_grad():
        outputs = model(input_ids)
        logits = outputs.logits

        # Shift logits and labels for next token prediction
        shift_logits = logits[..., :-1, :].contiguous()
        shift_labels = input_ids[..., 1:].contiguous()

        # Calculate per-token losses
        loss_fct = torch.nn.CrossEntropyLoss(reduction="none")
        token_losses = loss_fct(
            shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)
        )
        token_perplexities = torch.exp(token_losses).cpu().numpy()

        # Get tokens (excluding the first one since we predict next tokens)
        tokens = tokenizer.convert_ids_to_tokens(input_ids[0][1:])

        # Clean up tokens for display and filter special characters
        cleaned_tokens = []
        filtered_perplexities = []
        for token, token_perp in zip(tokens, token_perplexities):
            # Skip special characters
            if is_special_character(token):
                continue

            if token.startswith("Δ "):
                cleaned_tokens.append(token[1:])  # Remove Δ  prefix
            elif token.startswith("##"):
                cleaned_tokens.append(token[2:])  # Remove ## prefix
            else:
                cleaned_tokens.append(token)
            filtered_perplexities.append(token_perp)

    return perplexity, cleaned_tokens, np.array(filtered_perplexities)


def calculate_encoder_perplexity(
    text, model, tokenizer, mask_probability=0.15, min_samples_per_token=10
):
    """Calculate pseudo-perplexity for encoder models using statistical sampling with multiple token masking"""
    device = next(model.parameters()).device

    # Tokenize the text
    inputs = tokenizer(
        text,
        return_tensors="pt",
        truncation=True,
        max_length=MODEL_SETTINGS["max_length"],
    )
    input_ids = inputs.input_ids.to(device)

    if input_ids.size(1) < 3:  # Need at least [CLS] + 1 token + [SEP]
        raise gr.Error("Text is too short for MLM perplexity calculation.")

    seq_length = input_ids.size(1)
    special_token_ids = {
        tokenizer.cls_token_id,
        tokenizer.sep_token_id,
        tokenizer.pad_token_id,
    }

    # Get content token indices (excluding special tokens)
    content_token_indices = [
        i for i in range(seq_length) if input_ids[0, i].item() not in special_token_ids
    ]

    if not content_token_indices:
        raise gr.Error("No content tokens found for analysis.")

    # Initialize storage for per-token perplexity samples
    token_perplexity_samples = {idx: [] for idx in content_token_indices}

    # Calculate overall average perplexity and collect samples
    all_losses = []
    max_iterations = (
        min_samples_per_token * 50
    )  # Safety limit to prevent infinite loops
    iteration = 0

    with torch.no_grad():
        while iteration < max_iterations:
            # Create a copy for masking
            masked_input = input_ids.clone()
            masked_indices = []

            # Randomly mask tokens based on mask_probability
            for idx in content_token_indices:
                if torch.rand(1).item() < mask_probability:
                    masked_indices.append(idx)
                    masked_input[0, idx] = tokenizer.mask_token_id

            # Skip if no tokens were masked
            if not masked_indices:
                iteration += 1
                continue

            # Get model predictions
            outputs = model(masked_input)
            predictions = outputs.logits

            # Calculate perplexity for each masked token
            for idx in masked_indices:
                original_token_id = input_ids[0, idx]
                pred_scores = predictions[0, idx]
                prob = F.softmax(pred_scores, dim=-1)[original_token_id]
                loss = -torch.log(prob + PROCESSING_SETTINGS["epsilon"])
                perplexity = math.exp(loss.item())

                # Store sample for this token
                token_perplexity_samples[idx].append(perplexity)
                all_losses.append(loss.item())

            iteration += 1

            # Check if we have enough samples for all tokens
            min_samples_collected = min(
                len(samples) for samples in token_perplexity_samples.values()
            )
            if min_samples_collected >= min_samples_per_token:
                break

    # Calculate overall average perplexity
    if all_losses:
        avg_loss = np.mean(all_losses)
        overall_perplexity = math.exp(avg_loss)
    else:
        overall_perplexity = float("inf")

    # Calculate mean perplexity per token for visualization
    tokens = tokenizer.convert_ids_to_tokens(input_ids[0])
    token_perplexities = []

    for i in range(len(tokens)):
        if input_ids[0, i].item() in special_token_ids:
            token_perplexities.append(1.0)  # Low perplexity for special tokens
        elif i in token_perplexity_samples and token_perplexity_samples[i]:
            # Use mean of collected samples
            token_perplexities.append(np.mean(token_perplexity_samples[i]))
        else:
            # Fallback if no samples collected (shouldn't happen with proper min_samples)
            token_perplexities.append(2.0)

    # Clean up tokens for display and filter special characters
    cleaned_tokens = []
    filtered_perplexities = []
    for idx, (token, token_perp) in enumerate(zip(tokens, token_perplexities)):
        # Skip special characters and tokenizer special tokens
        if input_ids[0, idx].item() in special_token_ids:
            continue
        if is_special_character(token):
            continue

        if token.startswith("##"):
            cleaned_tokens.append(token[2:])
        else:
            cleaned_tokens.append(token)
        filtered_perplexities.append(token_perp)

    return overall_perplexity, cleaned_tokens, np.array(filtered_perplexities)


def perplexity_to_color(perplexity, min_perp=1, max_perp=1000):
    """
    Convert perplexity to a color on a gradient from green to red.
    Uses logarithmic scale for better visual distribution.

    Args:
        perplexity: The perplexity value
        min_perp: Minimum perplexity (maps to green)
        max_perp: Maximum perplexity (maps to red)

    Returns:
        Tuple of (r, g, b) values as integers (0-255)
    """
    # Clamp perplexity to range
    perp = max(min_perp, min(max_perp, perplexity))

    # Use logarithmic scale for better distribution
    log_min = math.log(min_perp)
    log_max = math.log(max_perp)
    log_perp = math.log(perp)

    # Normalize to 0-1 range
    normalized = (log_perp - log_min) / (log_max - log_min)

    # Create color gradient from green to red via yellow
    # Green: (0, 178, 0) - HSL(120, 100%, 35%)
    # Yellow: (255, 255, 0) - HSL(60, 100%, 50%)
    # Red: (255, 0, 0) - HSL(0, 100%, 50%)

    if normalized < 0.5:
        # Green to Yellow
        factor = normalized * 2  # 0 to 1
        r = int(0 + factor * 255)
        g = int(178 + factor * (255 - 178))
        b = 0
    else:
        # Yellow to Red
        factor = (normalized - 0.5) * 2  # 0 to 1
        r = 255
        g = int(255 * (1 - factor))
        b = 0

    return (r, g, b)


def create_visualization(tokens, perplexities):
    """Create custom HTML visualization with color-coded perplexities"""
    if len(tokens) == 0:
        return "<p>No tokens to visualize.</p>"

    # Cap perplexities for better visualization
    max_perplexity = np.max(perplexities)

    # Normalize perplexities to 0-1 range for color mapping
    normalized_perplexities = np.clip(perplexities / max_perplexity, 0, 1)

    # Create HTML with inline styles for color coding
    html_parts = [
        '<div style="font-family: Arial, sans-serif; font-size: 16px; line-height: 1.8; padding: 20px; border: 1px solid #ddd; border-radius: 8px; background-color: #fafafa;">',
        '<h3 style="margin-top: 0; color: #333;">Per-token Perplexity Visualization</h3>',
        '<div style="margin-bottom: 15px;">',
        '<span style="font-size: 12px; color: #666;">',
        "🟒 Low perplexity (confident) β†’ 🟑 Medium β†’ πŸ”΄ High perplexity (uncertain)",
        "</span>",
        "</div>",
        '<div style="line-height: 2.0;">',
    ]

    for i, (token, perp, norm_perp) in enumerate(
        zip(tokens, perplexities, normalized_perplexities)
    ):
        # Skip empty tokens
        if not token.strip():
            continue

        # Skip special characters (already filtered in calculation functions)
        if is_special_character(token):
            continue

        # Clean token for display
        # </w>, ##, Ġ, Ċ
        clean_token = (
            token.replace("</w>", "")
            .replace("##", "")
            .replace("Δ ", "")
            .replace("Ċ", "")
            .strip()
        )
        if not clean_token:
            continue

        # Add space before token if needed
        if i > 0 and clean_token[0] not in ".,!?;:":
            html_parts.append(" ")

        # Get color thresholds from configuration
        # low_thresh = VIZ_SETTINGS.get("thresholds", {}).get("low_threshold", 0.3)
        # high_thresh = VIZ_SETTINGS.get("thresholds", {}).get("high_threshold", 0.7)

        # Get colors from configuration
        # low_color = VIZ_SETTINGS["color_scheme"]["low_perplexity"]
        # med_color = VIZ_SETTINGS["color_scheme"]["medium_perplexity"]
        # high_color = VIZ_SETTINGS["color_scheme"]["high_perplexity"]

        # # Map perplexity to color using configuration
        # if norm_perp < low_thresh:  # Low perplexity - green
        #     # Interpolate between green and yellow
        #     factor = norm_perp / low_thresh
        #     red = int(low_color["r"] + factor * (med_color["r"] - low_color["r"]))
        #     green = int(low_color["g"] + factor * (med_color["g"] - low_color["g"]))
        #     blue = int(low_color["b"] + factor * (med_color["b"] - low_color["b"]))
        # elif norm_perp < high_thresh:  # Medium perplexity - yellow/orange
        #     # Interpolate between yellow and red
        #     factor = (norm_perp - low_thresh) / (high_thresh - low_thresh)
        #     red = int(med_color["r"] + factor * (high_color["r"] - med_color["r"]))
        #     green = int(med_color["g"] + factor * (high_color["g"] - med_color["g"]))
        #     blue = int(med_color["b"] + factor * (high_color["b"] - med_color["b"]))
        # else:  # High perplexity - red
        #     # Use high perplexity color, potentially darker for very high values
        #     factor = min((norm_perp - high_thresh) / (1.0 - high_thresh), 1.0)
        #     darken = 0.8 - (factor * 0.3)  # Darken by up to 30%
        #     red = int(high_color["r"] * darken)
        #     green = int(high_color["g"] * darken)
        #     blue = int(high_color["b"] * darken)

        tooltip_text = f"Perplexity: {perp:.3f} (normalized: {norm_perp:.3f})"

        # Clamp values
        # red = max(0, min(255, red))
        # green = max(0, min(255, green))
        # blue = max(0, min(255, blue))

        # Get alpha values from configuration
        bg_alpha = VIZ_SETTINGS["color_scheme"].get("background_alpha", 0.7)
        border_alpha = VIZ_SETTINGS["color_scheme"].get("border_alpha", 0.9)

        # Get RGB color from perplexity
        r, g, b = perplexity_to_color(
            perp, min_perp=1, max_perp=VIZ_SETTINGS["max_perplexity_display"]
        )

        # Create colored span with tooltip
        html_parts.append(
            f'<span style="'
            f"background-color: rgba({r}, {g}, {b}, {bg_alpha}); "
            f"color: #000; "
            f"padding: 2px 4px; "
            f"margin: 1px; "
            f"border-radius: 3px; "
            f"border: 1px solid rgba({r}, {g}, {b}, {border_alpha}); "
            f"font-weight: 500; "
            f"cursor: help; "
            f"display: inline-block;"
            f'" title="{tooltip_text}">{clean_token}</span>'
        )

    html_parts.extend(
        [
            "</div>",
            '<div style="margin-top: 15px; font-size: 12px; color: #666;">',
            f"Max perplexity in visualization: {max_perplexity:.2f} | ",
            f"Total tokens: {len(tokens)}",
            "</div>",
            "</div>",
        ]
    )

    return "".join(html_parts)


def process_text(text, model_name, model_type, mask_probability=0.15, min_samples=10):
    """Main processing function"""
    if not text.strip():
        return ERROR_MESSAGES["empty_text"], "", pd.DataFrame()

    try:
        # Load model and tokenizer
        model, tokenizer = load_model_and_tokenizer(model_name, model_type)

        # Calculate perplexity
        if model_type == "decoder":
            avg_perplexity, tokens, token_perplexities = calculate_decoder_perplexity(
                text, model, tokenizer
            )
            sampling_info = ""
        else:  # encoder
            avg_perplexity, tokens, token_perplexities = calculate_encoder_perplexity(
                text, model, tokenizer, mask_probability, min_samples
            )
            sampling_info = f"**Mask Probability:** {mask_probability:.1%}  \n**Min Samples per Token:** {min_samples}  \n"

        # Create visualization
        viz_html = create_visualization(tokens, token_perplexities)

        # Create summary
        summary = f"""
### Analysis Results

**Model:** `{model_name}`
**Model Type:** {model_type.title()}
**Average Perplexity:** {avg_perplexity:.4f}
**Number of Tokens:** {len(tokens)}
{sampling_info}"""

        # Create detailed results table
        df = pd.DataFrame(
            {"Token": tokens, "Perplexity": [f"{p:.4f}" for p in token_perplexities]}
        )

        return summary, viz_html, df

    except Exception as e:
        error_msg = ERROR_MESSAGES["processing_error"].format(error=str(e))
        return error_msg, "", pd.DataFrame()


# Create Gradio interface
with gr.Blocks(title=UI_SETTINGS["title"], theme=gr.themes.Soft()) as demo:
    gr.Markdown(f"# {UI_SETTINGS['title']}")
    gr.Markdown(UI_SETTINGS["description"])

    with gr.Row():
        with gr.Column(scale=2):
            text_input = gr.Textbox(
                label="Input Text",
                placeholder="Enter the text you want to analyze...",
                lines=6,
                max_lines=10,
            )

            with gr.Row():
                model_name = gr.Dropdown(
                    label="Model Name",
                    choices=DEFAULT_MODELS["decoder"] + DEFAULT_MODELS["encoder"],
                    value="gpt2",
                    allow_custom_value=True,
                    info="Select a model or enter a custom HuggingFace model name",
                )

                model_type = gr.Radio(
                    label="Model Type",
                    choices=["decoder", "encoder"],
                    value="decoder",
                    info="Decoder for causal LM, Encoder for masked LM",
                )

            # Advanced settings for encoder models
            with gr.Row():
                mask_probability = gr.Slider(
                    label="Mask Probability",
                    minimum=PROCESSING_SETTINGS["min_mask_probability"],
                    maximum=PROCESSING_SETTINGS["max_mask_probability"],
                    value=PROCESSING_SETTINGS["default_mask_probability"],
                    step=0.05,
                    visible=False,
                    info="Probability of masking each token per iteration (encoder only)",
                )

                min_samples = gr.Slider(
                    label="Min Samples per Token",
                    minimum=PROCESSING_SETTINGS["min_samples_range"][0],
                    maximum=PROCESSING_SETTINGS["min_samples_range"][1],
                    value=PROCESSING_SETTINGS["default_min_samples"],
                    step=5,
                    visible=False,
                    info="Minimum perplexity samples to collect per token (encoder only)",
                )

            analyze_btn = gr.Button(
                "πŸ” Analyze Perplexity", variant="primary", size="lg"
            )

        with gr.Column(scale=3):
            summary_output = gr.Markdown(label="Summary")
            viz_output = gr.HTML(label="Perplexity Visualization")

    # Full-width table
    with gr.Row():
        table_output = gr.Dataframe(
            label="Detailed Token Results", interactive=False, wrap=True
        )

    # Update model dropdown based on type selection
    def update_model_choices(model_type):
        return gr.update(
            choices=DEFAULT_MODELS[model_type], value=DEFAULT_MODELS[model_type][0]
        )

    def toggle_advanced_settings(model_type):
        is_encoder = model_type == "encoder"
        return [
            gr.update(visible=is_encoder),  # mask_probability
            gr.update(visible=is_encoder),  # min_samples
        ]

    model_type.change(
        fn=lambda mt: [update_model_choices(mt)] + toggle_advanced_settings(mt),
        inputs=[model_type],
        outputs=[model_name, mask_probability, min_samples],
    )

    # Set up the analysis function
    analyze_btn.click(
        fn=process_text,
        inputs=[text_input, model_name, model_type, mask_probability, min_samples],
        outputs=[summary_output, viz_output, table_output],
    )

    # Add examples
    with gr.Accordion("πŸ“ Example Texts", open=False):
        examples_data = [
            [
                ex["text"],
                ex["model"],
                ex["type"],
                ex.get("mask_prob", 0.15),
                ex.get("min_samples", 10),
            ]
            for ex in UI_SETTINGS["examples"]
        ]

        gr.Examples(
            examples=examples_data,
            inputs=[text_input, model_name, model_type, mask_probability, min_samples],
            outputs=[summary_output, viz_output, table_output],
            fn=process_text,
            cache_examples=False,
            label="Click on an example to try it out:",
        )

    # Add footer with information
    gr.Markdown("""
    ---

    ### πŸ“Š How it works:

    - **Decoder Models** (GPT, etc.): Calculate true perplexity by measuring how well the model predicts the next token
    - **Encoder Models** (BERT, etc.): Calculate pseudo-perplexity using statistical sampling with multiple token masking
    - **Mask Probability**: For encoder models, controls what fraction of tokens get masked in each iteration
    - **Min Samples**: Minimum number of perplexity measurements collected per token for robust statistics
    - **Color Coding**: Red = High perplexity (uncertain), Green = Low perplexity (confident)

    ### ⚠️ Notes:
    - First model load may take some time
    - Models are cached after first use
    - Very long texts are truncated to 512 tokens
    - GPU acceleration is used when available
    - Encoder models use Monte Carlo sampling for robust perplexity estimates
    - Higher min samples = more accurate but slower analysis
    """)

if __name__ == "__main__":
    try:
        demo.launch(server_name="0.0.0.0", server_port=7860, show_api=False)
    except Exception as e:
        print(f"❌ Failed to launch app: {e}")
        print("πŸ’‘ Try running with: python run.py")
        # Fallback to basic launch
        try:
            demo.launch()
        except Exception as fallback_error:
            print(f"❌ Fallback launch also failed: {fallback_error}")
            print("πŸ’‘ Try updating Gradio: pip install --upgrade gradio")