Spaces:
Sleeping
Sleeping
Sai809701
commited on
Commit
Β·
2cba8eb
1
Parent(s):
fce0e0f
updated main.py
Browse files- Dockerfile +27 -3
- main.py +36 -32
Dockerfile
CHANGED
|
@@ -1,12 +1,36 @@
|
|
|
|
|
| 1 |
FROM python:3.10-slim
|
| 2 |
|
|
|
|
| 3 |
WORKDIR /app
|
| 4 |
|
|
|
|
| 5 |
COPY requirements.txt .
|
| 6 |
-
RUN pip install --no-cache-dir --upgrade pip
|
| 7 |
-
RUN pip install --no-cache-dir -r requirements.txt
|
| 8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
COPY . .
|
| 10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
EXPOSE 7860
|
| 12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Use official Python image
|
| 2 |
FROM python:3.10-slim
|
| 3 |
|
| 4 |
+
# Set working directory
|
| 5 |
WORKDIR /app
|
| 6 |
|
| 7 |
+
# Copy requirements and install dependencies
|
| 8 |
COPY requirements.txt .
|
|
|
|
|
|
|
| 9 |
|
| 10 |
+
# Upgrade pip and install pinned dependencies
|
| 11 |
+
RUN pip install --no-cache-dir --upgrade pip \
|
| 12 |
+
&& pip install --no-cache-dir -r requirements.txt
|
| 13 |
+
|
| 14 |
+
# Copy all code and model files
|
| 15 |
COPY . .
|
| 16 |
|
| 17 |
+
# Set Transformers cache to a writable folder
|
| 18 |
+
ENV TRANSFORMERS_CACHE=/tmp/hf_cache
|
| 19 |
+
|
| 20 |
+
# Expose FastAPI port
|
| 21 |
EXPOSE 7860
|
| 22 |
+
|
| 23 |
+
# Precompute embeddings at build time (optional: adjust if dataset is large)
|
| 24 |
+
RUN python -c "\
|
| 25 |
+
import os, torch, pandas as pd;\
|
| 26 |
+
from sentence_transformers import SentenceTransformer;\
|
| 27 |
+
model = SentenceTransformer('./muril_combined_multilingual_model');\
|
| 28 |
+
df = pd.read_csv('./muril_multilingual_dataset.csv').dropna(subset=['question','answer']);\
|
| 29 |
+
answers = df['answer'].tolist();\
|
| 30 |
+
embeddings = model.encode(answers, convert_to_tensor=True);\
|
| 31 |
+
torch.save(embeddings, './answer_embeddings.pt');\
|
| 32 |
+
print('β
Precomputed embeddings saved');\
|
| 33 |
+
"
|
| 34 |
+
|
| 35 |
+
# Run FastAPI with uvicorn
|
| 36 |
+
CMD ["uvicorn", "main:app", "--host", "0.0.0.0", "--port", "]()
|
main.py
CHANGED
|
@@ -1,33 +1,37 @@
|
|
| 1 |
import os
|
| 2 |
-
os.environ["TRANSFORMERS_CACHE"] = "/tmp/hf_cache"
|
|
|
|
| 3 |
import torch
|
| 4 |
-
|
|
|
|
| 5 |
from pydantic import BaseModel
|
| 6 |
from sentence_transformers import SentenceTransformer, util
|
| 7 |
-
|
| 8 |
-
from langdetect import detect, DetectorFactory
|
| 9 |
-
|
| 10 |
-
# Fix langdetect randomness
|
| 11 |
-
DetectorFactory.seed = 0
|
| 12 |
|
| 13 |
# --- Configuration ---
|
| 14 |
MODEL_PATH = './muril_combined_multilingual_model'
|
| 15 |
CSV_PATH = './muril_multilingual_dataset.csv'
|
|
|
|
| 16 |
|
| 17 |
# --- Load MuRIL Model and Dataset ---
|
| 18 |
def load_resources():
|
| 19 |
try:
|
| 20 |
model = SentenceTransformer(MODEL_PATH)
|
| 21 |
-
df = pd.read_csv(CSV_PATH).dropna(subset=['question',
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
except Exception as e:
|
| 27 |
print(f"β Error loading resources: {e}")
|
| 28 |
-
return None, None
|
| 29 |
|
| 30 |
-
model, df = load_resources()
|
| 31 |
|
| 32 |
# --- Initialize FastAPI ---
|
| 33 |
app = FastAPI(title="MuRIL Multilingual QA API")
|
|
@@ -35,7 +39,7 @@ app = FastAPI(title="MuRIL Multilingual QA API")
|
|
| 35 |
# --- API Data Models ---
|
| 36 |
class QueryRequest(BaseModel):
|
| 37 |
question: str
|
| 38 |
-
lang: str = None #
|
| 39 |
|
| 40 |
class QAResponse(BaseModel):
|
| 41 |
answer: str
|
|
@@ -47,28 +51,28 @@ def get_answer_endpoint(request: QueryRequest):
|
|
| 47 |
return {"answer": "Model not loaded."}
|
| 48 |
|
| 49 |
question_text = request.question
|
| 50 |
-
|
| 51 |
-
try:
|
| 52 |
-
question_lang = detect(question_text)
|
| 53 |
-
except:
|
| 54 |
-
question_lang = None
|
| 55 |
|
| 56 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
|
| 58 |
-
# Filter
|
| 59 |
filtered_df = df
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
cosine_scores = util.pytorch_cos_sim(question_emb,
|
| 69 |
best_idx = torch.argmax(cosine_scores).item()
|
| 70 |
answer = filtered_df.iloc[best_idx]['answer']
|
| 71 |
-
|
| 72 |
return {"answer": answer}
|
| 73 |
|
| 74 |
@app.get("/")
|
|
|
|
| 1 |
import os
|
| 2 |
+
os.environ["TRANSFORMERS_CACHE"] = "/tmp/hf_cache" # MUST be before importing SentenceTransformer
|
| 3 |
+
|
| 4 |
import torch
|
| 5 |
+
import pandas as pd
|
| 6 |
+
from fastapi import FastAPI
|
| 7 |
from pydantic import BaseModel
|
| 8 |
from sentence_transformers import SentenceTransformer, util
|
| 9 |
+
from langdetect import detect
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
# --- Configuration ---
|
| 12 |
MODEL_PATH = './muril_combined_multilingual_model'
|
| 13 |
CSV_PATH = './muril_multilingual_dataset.csv'
|
| 14 |
+
EMBEDDINGS_PATH = './answer_embeddings.pt'
|
| 15 |
|
| 16 |
# --- Load MuRIL Model and Dataset ---
|
| 17 |
def load_resources():
|
| 18 |
try:
|
| 19 |
model = SentenceTransformer(MODEL_PATH)
|
| 20 |
+
df = pd.read_csv(CSV_PATH).dropna(subset=['question','answer'])
|
| 21 |
+
if os.path.exists(EMBEDDINGS_PATH):
|
| 22 |
+
answer_embeddings = torch.load(EMBEDDINGS_PATH)
|
| 23 |
+
print("β
Loaded precomputed embeddings")
|
| 24 |
+
else:
|
| 25 |
+
answers = df['answer'].tolist()
|
| 26 |
+
answer_embeddings = model.encode(answers, convert_to_tensor=True)
|
| 27 |
+
torch.save(answer_embeddings, EMBEDDINGS_PATH)
|
| 28 |
+
print("β
Computed and saved embeddings")
|
| 29 |
+
return model, df, answer_embeddings
|
| 30 |
except Exception as e:
|
| 31 |
print(f"β Error loading resources: {e}")
|
| 32 |
+
return None, None, None
|
| 33 |
|
| 34 |
+
model, df, answer_embeddings = load_resources()
|
| 35 |
|
| 36 |
# --- Initialize FastAPI ---
|
| 37 |
app = FastAPI(title="MuRIL Multilingual QA API")
|
|
|
|
| 39 |
# --- API Data Models ---
|
| 40 |
class QueryRequest(BaseModel):
|
| 41 |
question: str
|
| 42 |
+
lang: str = None # optional language filter, e.g., "en", "hi", "mr"
|
| 43 |
|
| 44 |
class QAResponse(BaseModel):
|
| 45 |
answer: str
|
|
|
|
| 51 |
return {"answer": "Model not loaded."}
|
| 52 |
|
| 53 |
question_text = request.question
|
| 54 |
+
lang_filter = request.lang
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
|
| 56 |
+
# Detect language if no filter provided
|
| 57 |
+
if not lang_filter:
|
| 58 |
+
try:
|
| 59 |
+
lang_filter = detect(question_text)
|
| 60 |
+
except:
|
| 61 |
+
lang_filter = None
|
| 62 |
|
| 63 |
+
# Filter dataset by language if specified
|
| 64 |
filtered_df = df
|
| 65 |
+
filtered_embeddings = answer_embeddings
|
| 66 |
+
if lang_filter:
|
| 67 |
+
if 'lang' in df.columns:
|
| 68 |
+
mask = df['lang'] == lang_filter
|
| 69 |
+
filtered_df = df[mask]
|
| 70 |
+
filtered_embeddings = torch.tensor([answer_embeddings[i] for i, m in enumerate(mask) if m])
|
| 71 |
+
|
| 72 |
+
question_emb = model.encode(question_text, convert_to_tensor=True)
|
| 73 |
+
cosine_scores = util.pytorch_cos_sim(question_emb, filtered_embeddings)
|
| 74 |
best_idx = torch.argmax(cosine_scores).item()
|
| 75 |
answer = filtered_df.iloc[best_idx]['answer']
|
|
|
|
| 76 |
return {"answer": answer}
|
| 77 |
|
| 78 |
@app.get("/")
|