File size: 8,949 Bytes
b295e6b d342ec0 b295e6b ac5ebc8 b295e6b ac5ebc8 a2d424a b295e6b ac5ebc8 d342ec0 a2d424a ac5ebc8 d342ec0 a2d424a ac5ebc8 d342ec0 ac5ebc8 d342ec0 ac5ebc8 a2d424a ac5ebc8 d342ec0 ac5ebc8 d342ec0 c0f04fe d342ec0 c0f04fe d342ec0 ac5ebc8 d342ec0 ac5ebc8 d342ec0 ac5ebc8 b295e6b d342ec0 ac5ebc8 d342ec0 b295e6b d342ec0 b295e6b ac5ebc8 d342ec0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 |
#!/usr/bin/env python3
"""
AI Chat Application - Pure FastAPI Backend
Serves custom frontend with OpenAI compatible API
"""
import os
import sys
import json
import logging
import time
from typing import Optional, Dict, Any, Generator, List
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
from fastapi import FastAPI, HTTPException, Response
from fastapi.responses import StreamingResponse, FileResponse
from fastapi.staticfiles import StaticFiles
from fastapi.middleware.cors import CORSMiddleware
import asyncio
import threading
from threading import Thread
from pydantic import BaseModel
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Pydantic models for API requests/responses
class ChatMessage(BaseModel):
role: str
content: str
class ChatRequest(BaseModel):
messages: List[ChatMessage]
model: Optional[str] = "qwen-coder-3-30b"
temperature: Optional[float] = 0.7
max_tokens: Optional[int] = 2048
stream: Optional[bool] = False
class ChatResponse(BaseModel):
id: str
object: str = "chat.completion"
created: int
model: str
choices: List[Dict[str, Any]]
# Global model variables
tokenizer = None
model = None
def load_model():
"""Load the Qwen model and tokenizer"""
global tokenizer, model
try:
model_name = "Qwen/Qwen3-Coder-30B-A3B-Instruct" # Adjust model name as needed
logger.info(f"Loading model: {model_name}")
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.float16,
device_map="auto",
trust_remote_code=True
)
logger.info("Model loaded successfully")
except Exception as e:
logger.error(f"Error loading model: {e}")
# For development/testing, use a fallback
logger.warning("Using fallback model response")
def generate_response(messages: List[ChatMessage], temperature: float = 0.7, max_tokens: int = 2048):
"""Generate response from the model"""
try:
if model is None or tokenizer is None:
# Fallback response for development
return "I'm a Qwen AI assistant. The model is currently loading, please try again in a moment."
# Format messages for the model
formatted_messages = []
for msg in messages:
formatted_messages.append({"role": msg.role, "content": msg.content})
# Apply chat template
text = tokenizer.apply_chat_template(
formatted_messages,
tokenize=False,
add_generation_prompt=True
)
# Tokenize
inputs = tokenizer(text, return_tensors="pt").to(model.device)
# Generate
with torch.no_grad():
outputs = model.generate(
**inputs,
max_new_tokens=max_tokens,
temperature=temperature,
do_sample=True,
pad_token_id=tokenizer.eos_token_id
)
# Decode response
response = tokenizer.decode(outputs[0][inputs.input_ids.shape[1]:], skip_special_tokens=True)
return response.strip()
except Exception as e:
logger.error(f"Error generating response: {e}")
return f"I apologize, but I encountered an error while processing your request: {str(e)}"
def generate_streaming_response(messages: List[ChatMessage], temperature: float = 0.7, max_tokens: int = 2048):
"""Generate streaming response from the model"""
try:
if model is None or tokenizer is None:
# Fallback streaming response
response = "I'm a Qwen AI assistant. The model is currently loading, please try again in a moment."
for char in response:
yield f"data: {json.dumps({'choices': [{'delta': {'content': char}}]})}\n\n"
time.sleep(0.05)
yield f"data: {json.dumps({'choices': [{'finish_reason': 'stop'}]})}\n\n"
yield "data: [DONE]\n\n"
return
# Format messages
formatted_messages = []
for msg in messages:
formatted_messages.append({"role": msg.role, "content": msg.content})
# Apply chat template
text = tokenizer.apply_chat_template(
formatted_messages,
tokenize=False,
add_generation_prompt=True
)
# Tokenize
inputs = tokenizer(text, return_tensors="pt").to(model.device)
# Setup streaming
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = {
**inputs,
"max_new_tokens": max_tokens,
"temperature": temperature,
"do_sample": True,
"pad_token_id": tokenizer.eos_token_id,
"streamer": streamer
}
# Start generation in a thread
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
# Stream the response
for new_text in streamer:
if new_text:
yield f"data: {json.dumps({'choices': [{'delta': {'content': new_text}}]})}\n\n"
yield f"data: {json.dumps({'choices': [{'finish_reason': 'stop'}]})}\n\n"
yield "data: [DONE]\n\n"
except Exception as e:
logger.error(f"Error in streaming generation: {e}")
error_msg = f"Error: {str(e)}"
yield f"data: {json.dumps({'choices': [{'delta': {'content': error_msg}}]})}\n\n"
yield f"data: {json.dumps({'choices': [{'finish_reason': 'stop'}]})}\n\n"
yield "data: [DONE]\n\n"
# FastAPI app
app = FastAPI(title="AI Chat API", description="OpenAI compatible interface for Qwen model")
# Add CORS middleware
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# API endpoints
@app.get("/")
async def serve_index():
"""Serve the main HTML file"""
return FileResponse("public/index.html")
@app.get("/health")
async def health_check():
"""Health check endpoint"""
return {"status": "healthy", "model_loaded": model is not None}
@app.get("/ping")
async def ping():
"""Simple ping endpoint"""
return {"status": "pong"}
@app.get("/api/models")
async def list_models():
"""List available models"""
return {
"data": [
{
"id": "qwen-coder-3-30b",
"object": "model",
"created": int(time.time()),
"owned_by": "qwen"
}
]
}
@app.post("/api/chat")
async def chat_completion(request: ChatRequest):
"""OpenAI compatible chat completion endpoint"""
try:
if request.stream:
return StreamingResponse(
generate_streaming_response(
request.messages,
request.temperature or 0.7,
request.max_tokens or 2048
),
media_type="text/plain"
)
else:
response_content = generate_response(
request.messages,
request.temperature or 0.7,
request.max_tokens or 2048
)
return ChatResponse(
id=f"chatcmpl-{int(time.time())}",
created=int(time.time()),
model=request.model or "qwen-coder-3-30b",
choices=[{
"index": 0,
"message": {
"role": "assistant",
"content": response_content
},
"finish_reason": "stop"
}]
)
except Exception as e:
logger.error(f"Error in chat completion: {e}")
raise HTTPException(status_code=500, detail=str(e))
@app.post("/v1/chat/completions")
async def openai_chat_completion(request: ChatRequest):
"""OpenAI API compatible endpoint"""
return await chat_completion(request)
# Mount static files AFTER API routes
app.mount("/", StaticFiles(directory="public", html=True), name="static")
# Startup event
@app.on_event("startup")
async def startup_event():
"""Initialize the model on startup"""
# Load model in background thread to avoid blocking startup
thread = Thread(target=load_model)
thread.daemon = True
thread.start()
if __name__ == "__main__":
import uvicorn
# For Hugging Face Spaces
port = int(os.environ.get("PORT", 7860))
uvicorn.run(
app,
host="0.0.0.0",
port=port,
access_log=True
) |