Update app.py
Browse files
app.py
CHANGED
|
@@ -1,19 +1,13 @@
|
|
| 1 |
import os
|
| 2 |
import time
|
| 3 |
import random
|
| 4 |
-
import subprocess
|
| 5 |
-
import importlib
|
| 6 |
|
| 7 |
import gradio as gr
|
| 8 |
import cv2
|
| 9 |
import numpy as np
|
| 10 |
from PIL import Image
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
os.makedirs("./models/", exist_ok=True)
|
| 14 |
-
|
| 15 |
-
from huggingface_hub import snapshot_download
|
| 16 |
-
|
| 17 |
|
| 18 |
def ensure_wan():
|
| 19 |
try:
|
|
@@ -24,9 +18,6 @@ def ensure_wan():
|
|
| 24 |
env = dict(os.environ)
|
| 25 |
print(f"[setup] Installing wan2.1: {cmd}")
|
| 26 |
subprocess.run(cmd, shell=True, check=True, env=env)
|
| 27 |
-
importlib.invalidate_caches()
|
| 28 |
-
import wan # noqa
|
| 29 |
-
print("[setup] wan installed.")
|
| 30 |
|
| 31 |
def ensure_flash_attn():
|
| 32 |
try:
|
|
@@ -48,6 +39,9 @@ def ensure_flash_attn():
|
|
| 48 |
ensure_flash_attn()
|
| 49 |
ensure_wan()
|
| 50 |
|
|
|
|
|
|
|
|
|
|
| 51 |
|
| 52 |
def download_sam2():
|
| 53 |
snapshot_download(
|
|
@@ -55,7 +49,7 @@ def download_sam2():
|
|
| 55 |
local_dir="./sam2/SAM2-Video-Predictor/checkpoints/",
|
| 56 |
)
|
| 57 |
print("Download sam2 completed")
|
| 58 |
-
|
| 59 |
def download_refacade():
|
| 60 |
snapshot_download(
|
| 61 |
repo_id="fishze/Refacade",
|
|
@@ -63,28 +57,25 @@ def download_refacade():
|
|
| 63 |
)
|
| 64 |
print("Download refacade completed")
|
| 65 |
|
|
|
|
| 66 |
download_sam2()
|
| 67 |
download_refacade()
|
| 68 |
|
| 69 |
-
|
| 70 |
import torch
|
| 71 |
import torch.nn.functional as F
|
| 72 |
from decord import VideoReader, cpu
|
| 73 |
from moviepy.editor import ImageSequenceClip
|
| 74 |
-
|
| 75 |
from sam2.build_sam import build_sam2, build_sam2_video_predictor
|
| 76 |
from sam2.sam2_image_predictor import SAM2ImagePredictor
|
| 77 |
-
|
| 78 |
import spaces
|
| 79 |
-
|
| 80 |
from vace.models.wan.modules.model_mm import VaceMMModel
|
| 81 |
from vace.models.wan.modules.model_tr import VaceWanModel
|
| 82 |
-
from wan.text2video import FlowUniPCMultistepScheduler
|
| 83 |
from diffusers.schedulers import FlowMatchEulerDiscreteScheduler
|
|
|
|
| 84 |
from diffusers.utils import export_to_video, load_image, load_video
|
| 85 |
from vae import WanVAE
|
| 86 |
|
| 87 |
-
|
| 88 |
COLOR_PALETTE = [
|
| 89 |
(255, 0, 0),
|
| 90 |
(0, 255, 0),
|
|
@@ -101,10 +92,8 @@ COLOR_PALETTE = [
|
|
| 101 |
video_length = 201
|
| 102 |
W = 1024
|
| 103 |
H = W
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
DEVICE_PIPE = "cuda"
|
| 107 |
-
|
| 108 |
|
| 109 |
def get_pipe_image_and_video_predictor():
|
| 110 |
vae = WanVAE(
|
|
@@ -112,61 +101,50 @@ def get_pipe_image_and_video_predictor():
|
|
| 112 |
dtype=torch.float16,
|
| 113 |
)
|
| 114 |
|
|
|
|
|
|
|
| 115 |
texture_remover = VaceWanModel.from_config(
|
| 116 |
"./models/texture_remover/texture_remover.json"
|
| 117 |
)
|
| 118 |
-
|
| 119 |
"./models/texture_remover/texture_remover.pth",
|
| 120 |
map_location="cpu",
|
| 121 |
)
|
| 122 |
-
texture_remover.load_state_dict(
|
| 123 |
-
texture_remover = texture_remover.to(dtype=torch.float16, device=
|
| 124 |
|
| 125 |
model = VaceMMModel.from_config(
|
| 126 |
"./models/refacade/refacade.json"
|
| 127 |
)
|
| 128 |
-
|
| 129 |
"./models/refacade/refacade.pth",
|
| 130 |
map_location="cpu",
|
| 131 |
)
|
| 132 |
-
model.load_state_dict(
|
| 133 |
-
model = model.to(dtype=torch.float16, device=
|
| 134 |
|
| 135 |
sample_scheduler = FlowUniPCMultistepScheduler(
|
| 136 |
num_train_timesteps=1000,
|
| 137 |
shift=1,
|
| 138 |
)
|
| 139 |
-
|
| 140 |
-
from pipeline import RefacadePipeline
|
| 141 |
pipe = RefacadePipeline(
|
| 142 |
vae=vae,
|
| 143 |
transformer=model,
|
| 144 |
texture_remover=texture_remover,
|
| 145 |
scheduler=sample_scheduler,
|
| 146 |
)
|
| 147 |
-
pipe.to(
|
| 148 |
|
| 149 |
sam2_checkpoint = "./sam2/SAM2-Video-Predictor/checkpoints/sam2_hiera_large.pt"
|
| 150 |
config = "sam2_hiera_l.yaml"
|
| 151 |
|
| 152 |
-
video_predictor = build_sam2_video_predictor(
|
| 153 |
-
|
| 154 |
-
sam2_checkpoint,
|
| 155 |
-
device="cuda",
|
| 156 |
-
)
|
| 157 |
-
|
| 158 |
-
model_sam = build_sam2(
|
| 159 |
-
config,
|
| 160 |
-
sam2_checkpoint,
|
| 161 |
-
device=DEVICE_SAM,
|
| 162 |
-
)
|
| 163 |
model_sam.image_size = 1024
|
| 164 |
image_predictor = SAM2ImagePredictor(sam_model=model_sam)
|
| 165 |
|
| 166 |
return pipe, image_predictor, video_predictor
|
| 167 |
|
| 168 |
-
pipe, image_predictor, video_predictor = get_pipe_image_and_video_predictor()
|
| 169 |
-
|
| 170 |
|
| 171 |
def get_video_info(video_path, video_state):
|
| 172 |
video_state["input_points"] = []
|
|
@@ -194,27 +172,26 @@ def get_video_info(video_path, video_state):
|
|
| 194 |
image = Image.fromarray(first_frame)
|
| 195 |
return image
|
| 196 |
|
|
|
|
| 197 |
def segment_frame(evt: gr.SelectData, label, video_state):
|
| 198 |
if video_state["origin_images"] is None:
|
| 199 |
return None
|
| 200 |
-
|
| 201 |
x, y = evt.index
|
| 202 |
new_point = [x, y]
|
| 203 |
label_value = 1 if label == "Positive" else 0
|
| 204 |
|
| 205 |
video_state["input_points"].append(new_point)
|
| 206 |
video_state["input_labels"].append(label_value)
|
| 207 |
-
|
| 208 |
height, width = video_state["origin_images"][0].shape[0:2]
|
| 209 |
scaled_points = []
|
| 210 |
for pt in video_state["input_points"]:
|
| 211 |
sx = pt[0] / width
|
| 212 |
sy = pt[1] / height
|
| 213 |
scaled_points.append([sx, sy])
|
|
|
|
| 214 |
video_state["scaled_points"] = scaled_points
|
| 215 |
|
| 216 |
-
|
| 217 |
-
image_predictor.set_image(img0)
|
| 218 |
mask, _, _ = image_predictor.predict(
|
| 219 |
point_coords=video_state["scaled_points"],
|
| 220 |
point_labels=video_state["input_labels"],
|
|
@@ -231,10 +208,9 @@ def segment_frame(evt: gr.SelectData, label, video_state):
|
|
| 231 |
/ 255.0
|
| 232 |
)
|
| 233 |
color = color[None, None, :]
|
| 234 |
-
org_image =
|
| 235 |
painted_image = (1 - mask * 0.5) * org_image + mask * 0.5 * color
|
| 236 |
painted_image = np.uint8(np.clip(painted_image * 255, 0, 255))
|
| 237 |
-
|
| 238 |
video_state["painted_images"] = np.expand_dims(painted_image, axis=0)
|
| 239 |
video_state["masks"] = np.expand_dims(mask[:, :, 0], axis=0)
|
| 240 |
|
|
@@ -247,6 +223,7 @@ def segment_frame(evt: gr.SelectData, label, video_state):
|
|
| 247 |
|
| 248 |
return Image.fromarray(painted_image)
|
| 249 |
|
|
|
|
| 250 |
def clear_clicks(video_state):
|
| 251 |
video_state["input_points"] = []
|
| 252 |
video_state["input_labels"] = []
|
|
@@ -260,6 +237,7 @@ def clear_clicks(video_state):
|
|
| 260 |
else None
|
| 261 |
)
|
| 262 |
|
|
|
|
| 263 |
def set_ref_image(ref_img, ref_state):
|
| 264 |
if ref_img is None:
|
| 265 |
return None
|
|
@@ -277,6 +255,7 @@ def set_ref_image(ref_img, ref_state):
|
|
| 277 |
|
| 278 |
return Image.fromarray(img_np)
|
| 279 |
|
|
|
|
| 280 |
def segment_ref_frame(evt: gr.SelectData, label, ref_state):
|
| 281 |
if ref_state["origin_image"] is None:
|
| 282 |
return None
|
|
@@ -320,7 +299,7 @@ def segment_ref_frame(evt: gr.SelectData, label, ref_state):
|
|
| 320 |
painted = (1 - mask * 0.5) * org_image + mask * 0.5 * color
|
| 321 |
painted = np.uint8(np.clip(painted * 255, 0, 255))
|
| 322 |
|
| 323 |
-
for i in range(len(ref_state["input_points"])):
|
| 324 |
point = ref_state["input_points"][i]
|
| 325 |
if ref_state["input_labels"][i] == 0:
|
| 326 |
cv2.circle(painted, point, radius=3, color=(0, 0, 255), thickness=-1)
|
|
@@ -329,6 +308,7 @@ def segment_ref_frame(evt: gr.SelectData, label, ref_state):
|
|
| 329 |
|
| 330 |
return Image.fromarray(painted)
|
| 331 |
|
|
|
|
| 332 |
def clear_ref_clicks(ref_state):
|
| 333 |
ref_state["input_points"] = []
|
| 334 |
ref_state["input_labels"] = []
|
|
@@ -366,11 +346,11 @@ def track_video(n_frames, video_state):
|
|
| 366 |
sam2_checkpoint = "./sam2/SAM2-Video-Predictor/checkpoints/sam2_hiera_large.pt"
|
| 367 |
config = "sam2_hiera_l.yaml"
|
| 368 |
video_predictor_local = build_sam2_video_predictor(
|
| 369 |
-
config, sam2_checkpoint, device=
|
| 370 |
)
|
| 371 |
|
| 372 |
inference_state = video_predictor_local.init_state(
|
| 373 |
-
images=images / 255, device=
|
| 374 |
)
|
| 375 |
|
| 376 |
if len(torch.from_numpy(video_state["masks"][0]).shape) == 3:
|
|
@@ -417,6 +397,7 @@ def track_video(n_frames, video_state):
|
|
| 417 |
print("Tracking done")
|
| 418 |
return video_file, video_state
|
| 419 |
|
|
|
|
| 420 |
@spaces.GPU(duration=50)
|
| 421 |
def inference_and_return_video(
|
| 422 |
dilate_radius,
|
|
@@ -477,7 +458,7 @@ def inference_and_return_video(
|
|
| 477 |
ref_mask_bin = (ref_mask_np > 0.5).astype(np.uint8) * 255
|
| 478 |
ref_mask_pil = Image.fromarray(ref_mask_bin, mode="L")
|
| 479 |
|
| 480 |
-
pipe.to(
|
| 481 |
with torch.no_grad():
|
| 482 |
retex_frames, mesh_frames, ref_img_out = pipe(
|
| 483 |
video=video_frames,
|
|
@@ -493,7 +474,7 @@ def inference_and_return_video(
|
|
| 493 |
guidance_scale=float(guidance_scale),
|
| 494 |
reference_patch_ratio=float(ref_patch_ratio),
|
| 495 |
fg_thresh=float(fg_threshold),
|
| 496 |
-
generator=torch.Generator(device=
|
| 497 |
return_dict=False,
|
| 498 |
)
|
| 499 |
|
|
@@ -522,7 +503,6 @@ def inference_and_return_video(
|
|
| 522 |
|
| 523 |
return retex_video_file, mesh_video_file, ref_image_to_show
|
| 524 |
|
| 525 |
-
# ================== Gradio UI ==================
|
| 526 |
|
| 527 |
text = """
|
| 528 |
<div style='text-align:center; font-size:32px; font-family: Arial, Helvetica, sans-serif;'>
|
|
@@ -533,6 +513,8 @@ text = """
|
|
| 533 |
</div>
|
| 534 |
"""
|
| 535 |
|
|
|
|
|
|
|
| 536 |
with gr.Blocks() as demo:
|
| 537 |
video_state = gr.State(
|
| 538 |
{
|
|
@@ -564,7 +546,7 @@ with gr.Blocks() as demo:
|
|
| 564 |
with gr.Column():
|
| 565 |
video_input = gr.Video(label="Upload Video", elem_id="my-video1")
|
| 566 |
get_info_btn = gr.Button("Extract First Frame", elem_id="my-btn")
|
| 567 |
-
|
| 568 |
gr.Examples(
|
| 569 |
examples=[
|
| 570 |
["./examples/1.mp4"],
|
|
@@ -576,7 +558,7 @@ with gr.Blocks() as demo:
|
|
| 576 |
],
|
| 577 |
inputs=[video_input],
|
| 578 |
label="You can upload or choose a source video below to retexture.",
|
| 579 |
-
elem_id="my-btn2"
|
| 580 |
)
|
| 581 |
|
| 582 |
image_output = gr.Image(
|
|
@@ -623,18 +605,6 @@ with gr.Blocks() as demo:
|
|
| 623 |
width: 60% !important;
|
| 624 |
margin: 0 auto;
|
| 625 |
}
|
| 626 |
-
#my-btn3 button {
|
| 627 |
-
width: 120px !important;
|
| 628 |
-
max-width: 120px !important;
|
| 629 |
-
min-width: 120px !important;
|
| 630 |
-
height: 70px !important;
|
| 631 |
-
max-height: 70px !important;
|
| 632 |
-
min-height: 70px !important;
|
| 633 |
-
margin: 8px !important;
|
| 634 |
-
border-radius: 8px !important;
|
| 635 |
-
overflow: hidden !important;
|
| 636 |
-
white-space: normal !important;
|
| 637 |
-
}
|
| 638 |
#ref_title {
|
| 639 |
text-align: center;
|
| 640 |
}
|
|
@@ -686,7 +656,7 @@ with gr.Blocks() as demo:
|
|
| 686 |
],
|
| 687 |
inputs=[ref_image_input],
|
| 688 |
label="You can upload or choose a reference image below to retexture.",
|
| 689 |
-
elem_id="my-btn3"
|
| 690 |
)
|
| 691 |
ref_image_display = gr.Image(
|
| 692 |
label="Reference Mask Segmentation",
|
|
@@ -742,7 +712,7 @@ with gr.Blocks() as demo:
|
|
| 742 |
maximum=2147483647,
|
| 743 |
value=42,
|
| 744 |
step=1,
|
| 745 |
-
label="Seed",
|
| 746 |
)
|
| 747 |
|
| 748 |
remove_btn = gr.Button("Retexture", elem_id="my-btn")
|
|
|
|
| 1 |
import os
|
| 2 |
import time
|
| 3 |
import random
|
|
|
|
|
|
|
| 4 |
|
| 5 |
import gradio as gr
|
| 6 |
import cv2
|
| 7 |
import numpy as np
|
| 8 |
from PIL import Image
|
| 9 |
+
import subprocess
|
| 10 |
+
import importlib
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
def ensure_wan():
|
| 13 |
try:
|
|
|
|
| 18 |
env = dict(os.environ)
|
| 19 |
print(f"[setup] Installing wan2.1: {cmd}")
|
| 20 |
subprocess.run(cmd, shell=True, check=True, env=env)
|
|
|
|
|
|
|
|
|
|
| 21 |
|
| 22 |
def ensure_flash_attn():
|
| 23 |
try:
|
|
|
|
| 39 |
ensure_flash_attn()
|
| 40 |
ensure_wan()
|
| 41 |
|
| 42 |
+
os.makedirs("./sam2/SAM2-Video-Predictor/checkpoints/", exist_ok=True)
|
| 43 |
+
|
| 44 |
+
from huggingface_hub import snapshot_download
|
| 45 |
|
| 46 |
def download_sam2():
|
| 47 |
snapshot_download(
|
|
|
|
| 49 |
local_dir="./sam2/SAM2-Video-Predictor/checkpoints/",
|
| 50 |
)
|
| 51 |
print("Download sam2 completed")
|
| 52 |
+
|
| 53 |
def download_refacade():
|
| 54 |
snapshot_download(
|
| 55 |
repo_id="fishze/Refacade",
|
|
|
|
| 57 |
)
|
| 58 |
print("Download refacade completed")
|
| 59 |
|
| 60 |
+
|
| 61 |
download_sam2()
|
| 62 |
download_refacade()
|
| 63 |
|
|
|
|
| 64 |
import torch
|
| 65 |
import torch.nn.functional as F
|
| 66 |
from decord import VideoReader, cpu
|
| 67 |
from moviepy.editor import ImageSequenceClip
|
|
|
|
| 68 |
from sam2.build_sam import build_sam2, build_sam2_video_predictor
|
| 69 |
from sam2.sam2_image_predictor import SAM2ImagePredictor
|
|
|
|
| 70 |
import spaces
|
| 71 |
+
from pipeline import RefacadePipeline
|
| 72 |
from vace.models.wan.modules.model_mm import VaceMMModel
|
| 73 |
from vace.models.wan.modules.model_tr import VaceWanModel
|
|
|
|
| 74 |
from diffusers.schedulers import FlowMatchEulerDiscreteScheduler
|
| 75 |
+
from wan.text2video import FlowUniPCMultistepScheduler
|
| 76 |
from diffusers.utils import export_to_video, load_image, load_video
|
| 77 |
from vae import WanVAE
|
| 78 |
|
|
|
|
| 79 |
COLOR_PALETTE = [
|
| 80 |
(255, 0, 0),
|
| 81 |
(0, 255, 0),
|
|
|
|
| 92 |
video_length = 201
|
| 93 |
W = 1024
|
| 94 |
H = W
|
| 95 |
+
device = "cuda"
|
| 96 |
+
sam_device = "cpu"
|
|
|
|
|
|
|
| 97 |
|
| 98 |
def get_pipe_image_and_video_predictor():
|
| 99 |
vae = WanVAE(
|
|
|
|
| 101 |
dtype=torch.float16,
|
| 102 |
)
|
| 103 |
|
| 104 |
+
pipe_device = "cuda"
|
| 105 |
+
|
| 106 |
texture_remover = VaceWanModel.from_config(
|
| 107 |
"./models/texture_remover/texture_remover.json"
|
| 108 |
)
|
| 109 |
+
ckpt = torch.load(
|
| 110 |
"./models/texture_remover/texture_remover.pth",
|
| 111 |
map_location="cpu",
|
| 112 |
)
|
| 113 |
+
texture_remover.load_state_dict(ckpt)
|
| 114 |
+
texture_remover = texture_remover.to(dtype=torch.float16, device=pipe_device)
|
| 115 |
|
| 116 |
model = VaceMMModel.from_config(
|
| 117 |
"./models/refacade/refacade.json"
|
| 118 |
)
|
| 119 |
+
ckpt = torch.load(
|
| 120 |
"./models/refacade/refacade.pth",
|
| 121 |
map_location="cpu",
|
| 122 |
)
|
| 123 |
+
model.load_state_dict(ckpt)
|
| 124 |
+
model = model.to(dtype=torch.float16, device=pipe_device)
|
| 125 |
|
| 126 |
sample_scheduler = FlowUniPCMultistepScheduler(
|
| 127 |
num_train_timesteps=1000,
|
| 128 |
shift=1,
|
| 129 |
)
|
|
|
|
|
|
|
| 130 |
pipe = RefacadePipeline(
|
| 131 |
vae=vae,
|
| 132 |
transformer=model,
|
| 133 |
texture_remover=texture_remover,
|
| 134 |
scheduler=sample_scheduler,
|
| 135 |
)
|
| 136 |
+
pipe.to(pipe_device)
|
| 137 |
|
| 138 |
sam2_checkpoint = "./sam2/SAM2-Video-Predictor/checkpoints/sam2_hiera_large.pt"
|
| 139 |
config = "sam2_hiera_l.yaml"
|
| 140 |
|
| 141 |
+
video_predictor = build_sam2_video_predictor(config, sam2_checkpoint, device=sam_device)
|
| 142 |
+
model_sam = build_sam2(config, sam2_checkpoint, device=sam_device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 143 |
model_sam.image_size = 1024
|
| 144 |
image_predictor = SAM2ImagePredictor(sam_model=model_sam)
|
| 145 |
|
| 146 |
return pipe, image_predictor, video_predictor
|
| 147 |
|
|
|
|
|
|
|
| 148 |
|
| 149 |
def get_video_info(video_path, video_state):
|
| 150 |
video_state["input_points"] = []
|
|
|
|
| 172 |
image = Image.fromarray(first_frame)
|
| 173 |
return image
|
| 174 |
|
| 175 |
+
|
| 176 |
def segment_frame(evt: gr.SelectData, label, video_state):
|
| 177 |
if video_state["origin_images"] is None:
|
| 178 |
return None
|
|
|
|
| 179 |
x, y = evt.index
|
| 180 |
new_point = [x, y]
|
| 181 |
label_value = 1 if label == "Positive" else 0
|
| 182 |
|
| 183 |
video_state["input_points"].append(new_point)
|
| 184 |
video_state["input_labels"].append(label_value)
|
|
|
|
| 185 |
height, width = video_state["origin_images"][0].shape[0:2]
|
| 186 |
scaled_points = []
|
| 187 |
for pt in video_state["input_points"]:
|
| 188 |
sx = pt[0] / width
|
| 189 |
sy = pt[1] / height
|
| 190 |
scaled_points.append([sx, sy])
|
| 191 |
+
|
| 192 |
video_state["scaled_points"] = scaled_points
|
| 193 |
|
| 194 |
+
image_predictor.set_image(video_state["origin_images"][0])
|
|
|
|
| 195 |
mask, _, _ = image_predictor.predict(
|
| 196 |
point_coords=video_state["scaled_points"],
|
| 197 |
point_labels=video_state["input_labels"],
|
|
|
|
| 208 |
/ 255.0
|
| 209 |
)
|
| 210 |
color = color[None, None, :]
|
| 211 |
+
org_image = video_state["origin_images"][0].astype(np.float32) / 255.0
|
| 212 |
painted_image = (1 - mask * 0.5) * org_image + mask * 0.5 * color
|
| 213 |
painted_image = np.uint8(np.clip(painted_image * 255, 0, 255))
|
|
|
|
| 214 |
video_state["painted_images"] = np.expand_dims(painted_image, axis=0)
|
| 215 |
video_state["masks"] = np.expand_dims(mask[:, :, 0], axis=0)
|
| 216 |
|
|
|
|
| 223 |
|
| 224 |
return Image.fromarray(painted_image)
|
| 225 |
|
| 226 |
+
|
| 227 |
def clear_clicks(video_state):
|
| 228 |
video_state["input_points"] = []
|
| 229 |
video_state["input_labels"] = []
|
|
|
|
| 237 |
else None
|
| 238 |
)
|
| 239 |
|
| 240 |
+
|
| 241 |
def set_ref_image(ref_img, ref_state):
|
| 242 |
if ref_img is None:
|
| 243 |
return None
|
|
|
|
| 255 |
|
| 256 |
return Image.fromarray(img_np)
|
| 257 |
|
| 258 |
+
|
| 259 |
def segment_ref_frame(evt: gr.SelectData, label, ref_state):
|
| 260 |
if ref_state["origin_image"] is None:
|
| 261 |
return None
|
|
|
|
| 299 |
painted = (1 - mask * 0.5) * org_image + mask * 0.5 * color
|
| 300 |
painted = np.uint8(np.clip(painted * 255, 0, 255))
|
| 301 |
|
| 302 |
+
for i in range(len(ref_state["input_points"]))):
|
| 303 |
point = ref_state["input_points"][i]
|
| 304 |
if ref_state["input_labels"][i] == 0:
|
| 305 |
cv2.circle(painted, point, radius=3, color=(0, 0, 255), thickness=-1)
|
|
|
|
| 308 |
|
| 309 |
return Image.fromarray(painted)
|
| 310 |
|
| 311 |
+
|
| 312 |
def clear_ref_clicks(ref_state):
|
| 313 |
ref_state["input_points"] = []
|
| 314 |
ref_state["input_labels"] = []
|
|
|
|
| 346 |
sam2_checkpoint = "./sam2/SAM2-Video-Predictor/checkpoints/sam2_hiera_large.pt"
|
| 347 |
config = "sam2_hiera_l.yaml"
|
| 348 |
video_predictor_local = build_sam2_video_predictor(
|
| 349 |
+
config, sam2_checkpoint, device=sam_device
|
| 350 |
)
|
| 351 |
|
| 352 |
inference_state = video_predictor_local.init_state(
|
| 353 |
+
images=images / 255, device=sam_device
|
| 354 |
)
|
| 355 |
|
| 356 |
if len(torch.from_numpy(video_state["masks"][0]).shape) == 3:
|
|
|
|
| 397 |
print("Tracking done")
|
| 398 |
return video_file, video_state
|
| 399 |
|
| 400 |
+
|
| 401 |
@spaces.GPU(duration=50)
|
| 402 |
def inference_and_return_video(
|
| 403 |
dilate_radius,
|
|
|
|
| 458 |
ref_mask_bin = (ref_mask_np > 0.5).astype(np.uint8) * 255
|
| 459 |
ref_mask_pil = Image.fromarray(ref_mask_bin, mode="L")
|
| 460 |
|
| 461 |
+
pipe.to("cuda")
|
| 462 |
with torch.no_grad():
|
| 463 |
retex_frames, mesh_frames, ref_img_out = pipe(
|
| 464 |
video=video_frames,
|
|
|
|
| 474 |
guidance_scale=float(guidance_scale),
|
| 475 |
reference_patch_ratio=float(ref_patch_ratio),
|
| 476 |
fg_thresh=float(fg_threshold),
|
| 477 |
+
generator=torch.Generator(device="cuda").manual_seed(seed),
|
| 478 |
return_dict=False,
|
| 479 |
)
|
| 480 |
|
|
|
|
| 503 |
|
| 504 |
return retex_video_file, mesh_video_file, ref_image_to_show
|
| 505 |
|
|
|
|
| 506 |
|
| 507 |
text = """
|
| 508 |
<div style='text-align:center; font-size:32px; font-family: Arial, Helvetica, sans-serif;'>
|
|
|
|
| 513 |
</div>
|
| 514 |
"""
|
| 515 |
|
| 516 |
+
pipe, image_predictor, video_predictor = get_pipe_image_and_video_predictor()
|
| 517 |
+
|
| 518 |
with gr.Blocks() as demo:
|
| 519 |
video_state = gr.State(
|
| 520 |
{
|
|
|
|
| 546 |
with gr.Column():
|
| 547 |
video_input = gr.Video(label="Upload Video", elem_id="my-video1")
|
| 548 |
get_info_btn = gr.Button("Extract First Frame", elem_id="my-btn")
|
| 549 |
+
|
| 550 |
gr.Examples(
|
| 551 |
examples=[
|
| 552 |
["./examples/1.mp4"],
|
|
|
|
| 558 |
],
|
| 559 |
inputs=[video_input],
|
| 560 |
label="You can upload or choose a source video below to retexture.",
|
| 561 |
+
elem_id="my-btn2"
|
| 562 |
)
|
| 563 |
|
| 564 |
image_output = gr.Image(
|
|
|
|
| 605 |
width: 60% !important;
|
| 606 |
margin: 0 auto;
|
| 607 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 608 |
#ref_title {
|
| 609 |
text-align: center;
|
| 610 |
}
|
|
|
|
| 656 |
],
|
| 657 |
inputs=[ref_image_input],
|
| 658 |
label="You can upload or choose a reference image below to retexture.",
|
| 659 |
+
elem_id="my-btn3"
|
| 660 |
)
|
| 661 |
ref_image_display = gr.Image(
|
| 662 |
label="Reference Mask Segmentation",
|
|
|
|
| 712 |
maximum=2147483647,
|
| 713 |
value=42,
|
| 714 |
step=1,
|
| 715 |
+
label="Seed",
|
| 716 |
)
|
| 717 |
|
| 718 |
remove_btn = gr.Button("Retexture", elem_id="my-btn")
|