File size: 26,555 Bytes
e181cae 004b6a0 e181cae 004b6a0 e181cae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 |
from typing import Any, Callable, Dict, List, Optional, Union
import PIL.Image
import torch
import math
import random
import numpy as np
import torch.nn.functional as F
from typing import Tuple
from PIL import Image
from vae import WanVAE
from vace.models.wan.modules.model_mm import VaceMMModel
from vace.models.wan.modules.model_tr import VaceWanModel
from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback
from diffusers.image_processor import PipelineImageInput
from diffusers.loaders import WanLoraLoaderMixin
from diffusers.schedulers import FlowMatchEulerDiscreteScheduler
from diffusers.utils import logging
from diffusers.utils.torch_utils import randn_tensor
from diffusers.video_processor import VideoProcessor
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
from diffusers.utils import BaseOutput
from dataclasses import dataclass
@dataclass
class RefacadePipelineOutput(BaseOutput):
frames: torch.Tensor
meshes: torch.Tensor
ref_img: torch.Tensor
logger = logging.get_logger(__name__)
@torch.no_grad()
def _pad_to_multiple(x: torch.Tensor, multiple: int, mode: str = "reflect"):
H, W = x.shape[-2], x.shape[-1]
pad_h = (multiple - H % multiple) % multiple
pad_w = (multiple - W % multiple) % multiple
pad = (0, pad_w, 0, pad_h)
if pad_h or pad_w:
x = F.pad(x, pad, mode=mode)
return x, pad
@torch.no_grad()
def _unpad(x: torch.Tensor, pad):
l, r, t, b = pad
H, W = x.shape[-2], x.shape[-1]
return x[..., t:H - b if b > 0 else H, l:W - r if r > 0 else W]
@torch.no_grad()
def _resize(x: torch.Tensor, size: tuple, is_mask: bool):
mode = "nearest" if is_mask else "bilinear"
if is_mask:
return F.interpolate(x, size=size, mode=mode)
else:
return F.interpolate(x, size=size, mode=mode, align_corners=False)
@torch.no_grad()
def _center_scale_foreground_to_canvas(
x_f: torch.Tensor,
m_f: torch.Tensor,
target_hw: tuple,
bg_value: float = 1.0,
):
C, H, W = x_f.shape
H2, W2 = target_hw
device = x_f.device
ys, xs = (m_f > 0.5).nonzero(as_tuple=True)
canvas = torch.full((C, H2, W2), bg_value, dtype=x_f.dtype, device=device)
mask_canvas = torch.zeros((1, H2, W2), dtype=x_f.dtype, device=device)
if ys.numel() == 0:
return canvas, mask_canvas
y0, y1 = ys.min().item(), ys.max().item()
x0, x1 = xs.min().item(), xs.max().item()
crop_img = x_f[:, y0:y1 + 1, x0:x1 + 1]
crop_msk = m_f[y0:y1 + 1, x0:x1 + 1].unsqueeze(0)
hc, wc = crop_msk.shape[-2], crop_msk.shape[-1]
s = min(H2 / max(1, hc), W2 / max(1, wc))
Ht = max(1, min(H2, int(math.floor(hc * s))))
Wt = max(1, min(W2, int(math.floor(wc * s))))
crop_img_up = _resize(crop_img.unsqueeze(0), (Ht, Wt), is_mask=False).squeeze(0)
crop_msk_up = _resize(crop_msk.unsqueeze(0), (Ht, Wt), is_mask=True).squeeze(0)
crop_msk_up = (crop_msk_up > 0.5).to(crop_msk_up.dtype)
top = (H2 - Ht) // 2
left = (W2 - Wt) // 2
canvas[:, top:top + Ht, left:left + Wt] = crop_img_up
mask_canvas[:, top:top + Ht, left:left + Wt] = crop_msk_up
return canvas, mask_canvas
@torch.no_grad()
def _sample_patch_size_from_hw(
H: int,
W: int,
ratio: float = 0.2,
min_px: int = 16,
max_px: Optional[int] = None,
) -> int:
r = ratio
raw = r * min(H, W)
if max_px is None:
max_px = min(192, min(H, W))
P = int(round(raw))
P = max(min_px, min(P, max_px))
P = int(P)
return P
@torch.no_grad()
def _masked_patch_pack_to_center_rectangle(
x_f: torch.Tensor,
m_f: torch.Tensor,
patch: int,
fg_thresh: float = 0.8,
bg_value: float = 1.0,
min_patches: int = 4,
flip_prob: float = 0.5,
use_morph_erode: bool = False,
):
C, H, W = x_f.shape
device = x_f.device
P = int(patch)
x_pad, pad = _pad_to_multiple(x_f, P, mode="reflect")
l, r, t, b = pad
H2, W2 = x_pad.shape[-2], x_pad.shape[-1]
m_pad = F.pad(m_f.unsqueeze(0).unsqueeze(0), (l, r, t, b), mode="constant", value=0.0).squeeze(0)
cs_img, cs_msk = _center_scale_foreground_to_canvas(x_pad, m_pad.squeeze(0), (H2, W2), bg_value)
if (cs_msk > 0.5).sum() == 0:
out_img = _unpad(cs_img, pad).clamp_(-1, 1)
out_msk = _unpad(cs_msk, pad).clamp_(0, 1)
return out_img, out_msk, True
m_eff = cs_msk
if use_morph_erode:
erode_px = int(max(1, min(6, round(P * 0.03))))
m_eff = 1.0 - F.max_pool2d(1.0 - cs_msk, kernel_size=2 * erode_px + 1, stride=1, padding=erode_px)
x_pad2, pad2 = _pad_to_multiple(cs_img, P, mode="reflect")
m_pad2 = F.pad(m_eff, pad2, mode="constant", value=0.0)
H3, W3 = x_pad2.shape[-2], x_pad2.shape[-1]
m_pool = F.avg_pool2d(m_pad2, kernel_size=P, stride=P).view(-1)
base_thr = float(fg_thresh)
thr_candidates = [base_thr, max(base_thr - 0.05, 0.75), max(base_thr - 0.10, 0.60)]
x_unf = F.unfold(x_pad2.unsqueeze(0), kernel_size=P, stride=P)
N = x_unf.shape[-1]
sel = None
for thr in thr_candidates:
idx = (m_pool >= (thr - 1e-6)).nonzero(as_tuple=False).squeeze(1)
if idx.numel() >= min_patches:
sel = idx
break
if sel is None:
img_fallback = _unpad(_unpad(cs_img, pad2), pad).clamp_(-1, 1)
msk_fallback = _unpad(_unpad(cs_msk, pad2), pad).clamp_(0, 1)
return img_fallback, msk_fallback, True
sel = sel.to(device=device, dtype=torch.long)
sel = sel[(sel >= 0) & (sel < N)]
if sel.numel() == 0:
img_fallback = _unpad(_unpad(cs_img, pad2), pad).clamp_(-1, 1)
msk_fallback = _unpad(_unpad(cs_msk, pad2), pad).clamp_(0, 1)
return img_fallback, msk_fallback, True
perm = torch.randperm(sel.numel(), device=device, dtype=torch.long)
sel = sel[perm]
chosen_x = x_unf[:, :, sel]
K = chosen_x.shape[-1]
if K == 0:
img_fallback = _unpad(_unpad(cs_img, pad2), pad).clamp_(-1, 1)
msk_fallback = _unpad(_unpad(cs_msk, pad2), pad).clamp_(0, 1)
return img_fallback, msk_fallback, True
if flip_prob > 0:
cx4 = chosen_x.view(1, C, P, P, K)
do_flip = (torch.rand(K, device=device) < flip_prob)
coin = (torch.rand(K, device=device) < 0.5)
flip_h = do_flip & coin
flip_v = do_flip & (~coin)
if flip_h.any():
cx4[..., flip_h] = cx4[..., flip_h].flip(dims=[3])
if flip_v.any():
cx4[..., flip_v] = cx4[..., flip_v].flip(dims=[2])
chosen_x = cx4.view(1, C * P * P, K)
max_cols = max(1, W3 // P)
max_rows = max(1, H3 // P)
capacity = max_rows * max_cols
K_cap = min(K, capacity)
cols = int(max(1, min(int(math.floor(math.sqrt(K_cap))), max_cols)))
rows_full = min(max_rows, K_cap // cols)
K_used = rows_full * cols
if K_used == 0:
img_fallback = _unpad(_unpad(cs_img, pad2), pad).clamp_(-1, 1)
msk_fallback = _unpad(_unpad(cs_msk, pad2), pad).clamp_(0, 1)
return img_fallback, msk_fallback, True
chosen_x = chosen_x[:, :, :K_used]
rect_unf = torch.full((1, C * P * P, rows_full * cols), bg_value, device=device, dtype=x_f.dtype)
rect_unf[:, :, :K_used] = chosen_x
rect = F.fold(rect_unf, output_size=(rows_full * P, cols * P), kernel_size=P, stride=P).squeeze(0)
ones_patch = torch.ones((1, 1 * P * P, K_used), device=device, dtype=x_f.dtype)
mask_rect_unf = torch.zeros((1, 1 * P * P, rows_full * cols), device=device, dtype=x_f.dtype)
mask_rect_unf[:, :, :K_used] = ones_patch
rect_mask = F.fold(mask_rect_unf, output_size=(rows_full * P, cols * P), kernel_size=P, stride=P).squeeze(0)
Hr, Wr = rect.shape[-2], rect.shape[-1]
s = min(H3 / max(1, Hr), W3 / max(1, Wr))
Ht = min(max(1, int(math.floor(Hr * s))), H3)
Wt = min(max(1, int(math.floor(Wr * s))), W3)
rect_up = _resize(rect.unsqueeze(0), (Ht, Wt), is_mask=False).squeeze(0)
rect_mask_up = _resize(rect_mask.unsqueeze(0), (Ht, Wt), is_mask=True).squeeze(0)
canvas_x = torch.full((C, H3, W3), bg_value, device=device, dtype=x_f.dtype)
canvas_m = torch.zeros((1, H3, W3), device=device, dtype=x_f.dtype)
top, left = (H3 - Ht) // 2, (W3 - Wt) // 2
canvas_x[:, top:top + Ht, left:left + Wt] = rect_up
canvas_m[:, top:top + Ht, left:left + Wt] = rect_mask_up
out_img = _unpad(_unpad(canvas_x, pad2), pad).clamp_(-1, 1)
out_msk = _unpad(_unpad(canvas_m, pad2), pad).clamp_(0, 1)
return out_img, out_msk, False
@torch.no_grad()
def _compose_centered_foreground(x_f: torch.Tensor, m_f3: torch.Tensor, target_hw: Tuple[int, int], bg_value: float = 1.0):
m_bin = (m_f3 > 0.5).float().mean(dim=0)
m_bin = (m_bin > 0.5).float()
return _center_scale_foreground_to_canvas(x_f, m_bin, target_hw, bg_value)
class RefacadePipeline(DiffusionPipeline, WanLoraLoaderMixin):
model_cpu_offload_seq = "texture_remover->transformer->vae"
def __init__(
self,
vae,
scheduler: FlowMatchEulerDiscreteScheduler,
transformer: VaceMMModel = None,
texture_remover: VaceWanModel = None,
):
super().__init__()
self.register_modules(
vae=vae,
texture_remover=texture_remover,
transformer=transformer,
scheduler=scheduler,
)
self.vae_scale_factor_temporal = 4
self.vae_scale_factor_spatial = 8
self.video_processor = VideoProcessor(vae_scale_factor=self.vae_scale_factor_spatial)
self.empty_embedding = torch.load(
"./text_embedding/empty.pt",
map_location="cpu"
)
self.negative_embedding = torch.load(
"./text_embedding/negative.pt",
map_location="cpu"
)
def vace_encode_masks(self, masks: torch.Tensor):
masks = masks[:, :1, :, :, :]
B, C, D, H, W = masks.shape
patch_h, patch_w = self.vae_scale_factor_spatial, self.vae_scale_factor_spatial
stride_t = self.vae_scale_factor_temporal
patch_count = patch_h * patch_w
new_D = (D + stride_t - 1) // stride_t
new_H = 2 * (H // (patch_h * 2))
new_W = 2 * (W // (patch_w * 2))
masks = masks[:, 0]
masks = masks.view(B, D, new_H, patch_h, new_W, patch_w)
masks = masks.permute(0, 3, 5, 1, 2, 4)
masks = masks.reshape(B, patch_count, D, new_H, new_W)
masks = F.interpolate(
masks,
size=(new_D, new_H, new_W),
mode="nearest-exact"
)
return masks
def preprocess_conditions(
self,
video: Optional[List[PipelineImageInput]] = None,
mask: Optional[List[PipelineImageInput]] = None,
reference_image: Optional[PIL.Image.Image] = None,
reference_mask: Optional[PIL.Image.Image] = None,
batch_size: int = 1,
height: int = 480,
width: int = 832,
num_frames: int = 81,
reference_patch_ratio: float = 0.2,
fg_thresh: float = 0.9,
dtype: Optional[torch.dtype] = None,
device: Optional[torch.device] = None,
):
base = self.vae_scale_factor_spatial * 2
video_height, video_width = self.video_processor.get_default_height_width(video[0])
if video_height * video_width > height * width:
scale_w = width / video_width
scale_h = height / video_height
video_height, video_width = int(video_height * scale_h), int(video_width * scale_w)
if video_height % base != 0 or video_width % base != 0:
logger.warning(
f"Video height and width should be divisible by {base}, but got {video_height} and {video_width}. "
)
video_height = (video_height // base) * base
video_width = (video_width // base) * base
assert video_height * video_width <= height * width
video = self.video_processor.preprocess_video(video, video_height, video_width)
image_size = (video_height, video_width)
mask = self.video_processor.preprocess_video(mask, video_height, video_width)
mask = torch.clamp((mask + 1) / 2, min=0, max=1)
video = video.to(dtype=dtype, device=device)
mask = mask.to(dtype=dtype, device=device)
if reference_image is None:
raise ValueError("reference_image must be provided when using IMAGE_CONTROL mode.")
if isinstance(reference_image, (list, tuple)):
ref_img_pil = reference_image[0]
else:
ref_img_pil = reference_image
if reference_mask is not None and isinstance(reference_mask, (list, tuple)):
ref_mask_pil = reference_mask[0]
else:
ref_mask_pil = reference_mask
ref_img_t = self.video_processor.preprocess(ref_img_pil, image_size[0], image_size[1])
if ref_img_t.dim() == 4 and ref_img_t.shape[0] == 1:
ref_img_t = ref_img_t[0]
if ref_img_t.shape[0] == 1:
ref_img_t = ref_img_t.repeat(3, 1, 1)
ref_img_t = ref_img_t.to(dtype=dtype, device=device)
H, W = image_size
if ref_mask_pil is not None:
if not isinstance(ref_mask_pil, Image.Image):
ref_mask_pil = Image.fromarray(np.array(ref_mask_pil))
ref_mask_pil = ref_mask_pil.convert("L")
ref_mask_pil = ref_mask_pil.resize((W, H), Image.NEAREST)
mask_arr = np.array(ref_mask_pil)
m = torch.from_numpy(mask_arr).float() / 255.0
m = (m > 0.5).float()
ref_msk3 = m.unsqueeze(0).repeat(3, 1, 1)
else:
ref_msk3 = torch.ones(3, H, W, dtype=dtype)
ref_msk3 = ref_msk3.to(dtype=dtype, device=device)
if math.isclose(reference_patch_ratio, 1.0, rel_tol=1e-6, abs_tol=1e-6):
cs_img, cs_m = _compose_centered_foreground(
x_f=ref_img_t,
m_f3=ref_msk3,
target_hw=image_size,
bg_value=1.0,
)
ref_img_out = cs_img
ref_mask_out = cs_m
else:
patch = _sample_patch_size_from_hw(
H=image_size[0],
W=image_size[1],
ratio=reference_patch_ratio,
)
m_bin = (ref_msk3 > 0.5).float().mean(dim=0)
m_bin = (m_bin > 0.5).float()
reshuffled, reshuf_mask, used_fb = _masked_patch_pack_to_center_rectangle(
x_f=ref_img_t,
m_f=m_bin,
patch=patch,
fg_thresh=fg_thresh,
bg_value=1.0,
min_patches=4,
)
ref_img_out = reshuffled
ref_mask_out = reshuf_mask
B = video.shape[0]
if batch_size is not None:
B = batch_size
ref_image = ref_img_out.unsqueeze(0).unsqueeze(2).expand(B, -1, -1, -1, -1).contiguous()
ref_mask = ref_mask_out.unsqueeze(0).unsqueeze(2).expand(B, 3, -1, -1, -1).contiguous()
ref_image = ref_image.to(dtype=dtype, device=device)
ref_mask = ref_mask.to(dtype=dtype, device=device)
return video[:, :, :num_frames], mask[:, :, :num_frames], ref_image, ref_mask
@torch.no_grad()
def texture_remove(self, foreground_latent):
sample_scheduler = FlowMatchEulerDiscreteScheduler(num_train_timesteps=1000, shift=1)
text_embedding = torch.zeros(
[256, 4096],
device=foreground_latent.device,
dtype=foreground_latent.dtype
)
context = text_embedding.unsqueeze(0).expand(
foreground_latent.shape[0], -1, -1
).to(foreground_latent.device)
sample_scheduler.set_timesteps(3, device=foreground_latent.device)
timesteps = sample_scheduler.timesteps
noise = torch.randn_like(
foreground_latent,
dtype=foreground_latent.dtype,
device=foreground_latent.device
)
seq_len = math.ceil(
noise.shape[2] * noise.shape[3] * noise.shape[4] / 4
)
latents = noise
arg_c = {"context": context, "seq_len": seq_len}
with torch.autocast(device_type="cuda", dtype=torch.float16):
for _, t in enumerate(timesteps):
timestep = torch.stack([t]).to(foreground_latent.device)
noise_pred_cond = self.texture_remover(
latents,
t=timestep,
vace_context=foreground_latent,
vace_context_scale=1,
**arg_c
)[0]
temp_x0 = sample_scheduler.step(
noise_pred_cond, t, latents, return_dict=False
)[0]
latents = temp_x0
return latents
def dilate_mask_hw(self, mask: torch.Tensor, radius: int = 3) -> torch.Tensor:
B, C, F_, H, W = mask.shape
k = 2 * radius + 1
mask_2d = mask.permute(0, 2, 1, 3, 4).reshape(B * F_, C, H, W)
kernel = torch.ones(
(C, 1, k, k),
device=mask.device,
dtype=mask.dtype
)
dilated_2d = F.conv2d(
mask_2d,
weight=kernel,
bias=None,
stride=1,
padding=radius,
groups=C
)
dilated_2d = (dilated_2d > 0).to(mask.dtype)
dilated = dilated_2d.view(B, F_, C, H, W).permute(0, 2, 1, 3, 4)
return dilated
def prepare_vace_latents(
self,
dilate_radius: int,
video: torch.Tensor,
mask: torch.Tensor,
reference_image: Optional[torch.Tensor] = None,
reference_mask: Optional[torch.Tensor] = None,
device: Optional[torch.device] = None,
) -> torch.Tensor:
device = device or self._execution_device
vae_dtype = self.vae.dtype
video = video.to(dtype=vae_dtype)
mask = torch.where(mask > 0.5, 1.0, 0.0).to(dtype=vae_dtype)
mask_clone = mask.clone()
mask = self.dilate_mask_hw(mask, dilate_radius)
inactive = video * (1 - mask)
reactive = video * mask_clone
reactive_latent = self.vae.encode(reactive)
mesh_latent = self.texture_remove(reactive_latent)
inactive_latent = self.vae.encode(inactive)
ref_latent = self.vae.encode(reference_image)
neg_ref_latent = self.vae.encode(torch.ones_like(reference_image))
reference_mask = torch.where(reference_mask > 0.5, 1.0, 0.0).to(dtype=vae_dtype)
mask = self.vace_encode_masks(mask)
ref_mask = self.vace_encode_masks(reference_mask)
return inactive_latent, mesh_latent, ref_latent, neg_ref_latent, mask, ref_mask
def prepare_latents(
self,
batch_size: int,
num_channels_latents: int = 16,
height: int = 480,
width: int = 832,
num_frames: int = 81,
dtype: Optional[torch.dtype] = None,
device: Optional[torch.device] = None,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.Tensor] = None,
) -> torch.Tensor:
if latents is not None:
return latents.to(device=device, dtype=dtype)
num_latent_frames = (num_frames - 1) // self.vae_scale_factor_temporal + 1
shape = (
batch_size,
num_channels_latents,
num_latent_frames,
int(height) // self.vae_scale_factor_spatial,
int(width) // self.vae_scale_factor_spatial,
)
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
)
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
return latents
@property
def guidance_scale(self):
return self._guidance_scale
@property
def do_classifier_free_guidance(self):
return self._guidance_scale > 1.0
@property
def num_timesteps(self):
return self._num_timesteps
@property
def current_timestep(self):
return self._current_timestep
@torch.no_grad()
def __call__(
self,
video: Optional[PipelineImageInput] = None,
mask: Optional[PipelineImageInput] = None,
reference_image: Optional[PipelineImageInput] = None,
reference_mask: Optional[PipelineImageInput] = None,
conditioning_scale: float = 1.0,
dilate_radius: int = 3,
height: int = 480,
width: int = 832,
num_frames: int = 81,
num_inference_steps: int = 20,
guidance_scale: float = 1.5,
num_videos_per_prompt: Optional[int] = 1,
reference_patch_ratio: float = 0.2,
fg_thresh: float = 0.9,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.Tensor] = None,
output_type: Optional[str] = "np",
return_dict: bool = True,
):
if num_frames % self.vae_scale_factor_temporal != 1:
logger.warning(
f"`num_frames - 1` has to be divisible by {self.vae_scale_factor_temporal}. Rounding to the nearest number."
)
num_frames = num_frames // self.vae_scale_factor_temporal * self.vae_scale_factor_temporal + 1
num_frames = max(num_frames, 1)
self._guidance_scale = guidance_scale
device = self._execution_device
batch_size = 1
vae_dtype = self.vae.dtype
transformer_dtype = self.transformer.dtype if self.transformer is not None else self.transformer_2.dtype
self.scheduler.set_timesteps(num_inference_steps, device=device)
timesteps = self.scheduler.timesteps
video, mask, reference_image, reference_mask = self.preprocess_conditions(
video,
mask,
reference_image,
reference_mask,
batch_size,
height,
width,
num_frames,
reference_patch_ratio,
fg_thresh,
torch.float16,
device,
)
inactive_latent, mesh_latent, ref_latent, neg_ref_latent, mask, ref_mask = self.prepare_vace_latents(dilate_radius, video, mask, reference_image, reference_mask, device)
c = torch.cat([inactive_latent, mesh_latent, mask], dim=1)
c1 = torch.cat([ref_latent, ref_mask], dim=1)
c1_negative = torch.cat(
[neg_ref_latent, torch.zeros_like(ref_mask)],
dim=1
)
num_channels_latents = 16
noise = self.prepare_latents(
batch_size * num_videos_per_prompt,
num_channels_latents,
height,
width,
num_frames,
torch.float16,
device,
generator,
latents,
)
latents_cond = torch.cat([ref_latent, noise], dim=2)
latents_uncond = torch.cat([neg_ref_latent, noise], dim=2)
seq_len = math.ceil(
latents_cond.shape[2] *
latents_cond.shape[3] *
latents_cond.shape[4] / 4
)
seq_len_ref = math.ceil(
ref_latent.shape[2] *
ref_latent.shape[3] *
ref_latent.shape[4] / 4
)
context = self.empty_embedding.unsqueeze(0).expand(batch_size, -1, -1).to(device)
context_neg = self.negative_embedding.unsqueeze(0).expand(batch_size, -1, -1).to(device)
arg_c = {
"context": context,
"seq_len": seq_len,
"seq_len_ref": seq_len_ref
}
arg_c_null = {
"context": context_neg,
"seq_len": seq_len,
"seq_len_ref": seq_len_ref
}
self._num_timesteps = len(timesteps)
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
self._current_timestep = t
timestep = t.expand(batch_size)
with torch.autocast(device_type="cuda", dtype=torch.float16):
noise_pred = self.transformer(
latents_cond,
t=timestep,
vace_context=c,
ref_context=c1,
vace_context_scale=conditioning_scale,
**arg_c,
)[0]
if self.do_classifier_free_guidance:
noise_pred_uncond = self.transformer(
latents_uncond,
t=timestep,
vace_context=c,
ref_context=c1_negative,
vace_context_scale=0,
**arg_c_null,
)[0]
noise_pred = (noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond)).unsqueeze(0)
temp_x0 = self.scheduler.step(noise_pred[:, :, 1:],
t,
latents_cond[:, :, 1:],
return_dict=False)[0]
latents_cond = torch.cat([ref_latent, temp_x0], dim=2)
latents_uncond = torch.cat([neg_ref_latent, temp_x0], dim=2)
progress_bar.update()
self._current_timestep = None
if not output_type == "latent":
latents = temp_x0
latents = latents.to(vae_dtype)
video = self.vae.decode(latents)
video = self.video_processor.postprocess_video(video, output_type=output_type)
mesh = self.vae.decode(mesh_latent.to(vae_dtype))
mesh = self.video_processor.postprocess_video(mesh, output_type=output_type)
ref_img = reference_image.cpu().squeeze(0).squeeze(1).permute(1, 2, 0).numpy()
ref_img = ((ref_img+1)*255/2).astype(np.uint8)
else:
video = temp_x0
mesh = mesh_latent
ref_img = ref_latent
self.maybe_free_model_hooks()
if not return_dict:
return (video, mesh, ref_img)
return RefacadePipelineOutput(frames=video, meshes=mesh, ref_img=ref_img)
|