Spaces:
Running
Running
Randinu002
commited on
Commit
·
c553417
1
Parent(s):
d4eb7cd
Remove notebook_login and use secrets for auth
Browse files
model.py
CHANGED
|
@@ -1,8 +1,4 @@
|
|
| 1 |
-
# ===================================================================
|
| 2 |
-
# FINAL WORKING SCRIPT (v5): MANUAL STATISTICS POOLING
|
| 3 |
-
# ===================================================================
|
| 4 |
|
| 5 |
-
# --- 1. IMPORTS ---
|
| 6 |
import torch
|
| 7 |
import torch.nn as nn
|
| 8 |
import torch.nn.functional as F
|
|
@@ -16,14 +12,9 @@ from speechbrain.lobes.features import Fbank
|
|
| 16 |
from speechbrain.lobes.models.ECAPA_TDNN import ECAPA_TDNN
|
| 17 |
import torch.optim as optim
|
| 18 |
import itertools
|
| 19 |
-
from huggingface_hub import notebook_login
|
| 20 |
|
| 21 |
print("All libraries imported successfully.")
|
| 22 |
|
| 23 |
-
# --- 2. HUGGING FACE LOGIN ---
|
| 24 |
-
notebook_login()
|
| 25 |
-
|
| 26 |
-
# --- 3. ALL MODEL AND DATASET CLASSES ---
|
| 27 |
|
| 28 |
class AFM(nn.Module):
|
| 29 |
def __init__(self, channels):
|
|
@@ -71,13 +62,11 @@ class DBE(nn.Module):
|
|
| 71 |
cat_feats = torch.cat(main_outs[-3:], dim=1)
|
| 72 |
mfa_feats = self.mfa(cat_feats)
|
| 73 |
|
| 74 |
-
# <<< --- FINAL FIX: Manual Statistics Pooling --- >>>
|
| 75 |
-
# We replace the problematic SpeechBrain layer with a correct manual implementation.
|
| 76 |
mean = mfa_feats.mean(dim=2)
|
| 77 |
std = mfa_feats.std(dim=2)
|
| 78 |
-
pooled_feats = torch.cat((mean, std), dim=1)
|
| 79 |
|
| 80 |
-
norm_feats = self.bn(pooled_feats)
|
| 81 |
embedding = self.fc(norm_feats)
|
| 82 |
return embedding
|
| 83 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
|
|
|
|
| 2 |
import torch
|
| 3 |
import torch.nn as nn
|
| 4 |
import torch.nn.functional as F
|
|
|
|
| 12 |
from speechbrain.lobes.models.ECAPA_TDNN import ECAPA_TDNN
|
| 13 |
import torch.optim as optim
|
| 14 |
import itertools
|
|
|
|
| 15 |
|
| 16 |
print("All libraries imported successfully.")
|
| 17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
class AFM(nn.Module):
|
| 20 |
def __init__(self, channels):
|
|
|
|
| 62 |
cat_feats = torch.cat(main_outs[-3:], dim=1)
|
| 63 |
mfa_feats = self.mfa(cat_feats)
|
| 64 |
|
|
|
|
|
|
|
| 65 |
mean = mfa_feats.mean(dim=2)
|
| 66 |
std = mfa_feats.std(dim=2)
|
| 67 |
+
pooled_feats = torch.cat((mean, std), dim=1)
|
| 68 |
|
| 69 |
+
norm_feats = self.bn(pooled_feats)
|
| 70 |
embedding = self.fc(norm_feats)
|
| 71 |
return embedding
|
| 72 |
|