Spaces:
Runtime error
Runtime error
Commit
·
6f9700a
1
Parent(s):
1f955e8
Update model.py
Browse files
model.py
CHANGED
|
@@ -27,14 +27,9 @@ from annotator.uniformer import apply_uniformer
|
|
| 27 |
from annotator.util import HWC3, resize_image
|
| 28 |
|
| 29 |
CONTROLNET_MODEL_IDS = {
|
| 30 |
-
|
| 31 |
-
'hough': 'lllyasviel/sd-controlnet-mlsd',
|
| 32 |
-
'hed': 'lllyasviel/sd-controlnet-hed',
|
| 33 |
-
'scribble': 'lllyasviel/sd-controlnet-scribble',
|
| 34 |
-
'pose': 'lllyasviel/sd-controlnet-openpose',
|
| 35 |
-
'seg': 'lllyasviel/sd-controlnet-seg',
|
| 36 |
'depth': 'lllyasviel/sd-controlnet-depth',
|
| 37 |
-
|
| 38 |
}
|
| 39 |
|
| 40 |
|
|
@@ -131,405 +126,6 @@ class Model:
|
|
| 131 |
generator=generator,
|
| 132 |
image=control_image).images
|
| 133 |
|
| 134 |
-
@staticmethod
|
| 135 |
-
def preprocess_canny(
|
| 136 |
-
input_image: np.ndarray,
|
| 137 |
-
image_resolution: int,
|
| 138 |
-
low_threshold: int,
|
| 139 |
-
high_threshold: int,
|
| 140 |
-
) -> tuple[PIL.Image.Image, PIL.Image.Image]:
|
| 141 |
-
image = resize_image(HWC3(input_image), image_resolution)
|
| 142 |
-
control_image = apply_canny(image, low_threshold, high_threshold)
|
| 143 |
-
control_image = HWC3(control_image)
|
| 144 |
-
vis_control_image = 255 - control_image
|
| 145 |
-
return PIL.Image.fromarray(control_image), PIL.Image.fromarray(
|
| 146 |
-
vis_control_image)
|
| 147 |
-
|
| 148 |
-
@torch.inference_mode()
|
| 149 |
-
def process_canny(
|
| 150 |
-
self,
|
| 151 |
-
input_image: np.ndarray,
|
| 152 |
-
prompt: str,
|
| 153 |
-
additional_prompt: str,
|
| 154 |
-
negative_prompt: str,
|
| 155 |
-
num_images: int,
|
| 156 |
-
image_resolution: int,
|
| 157 |
-
num_steps: int,
|
| 158 |
-
guidance_scale: float,
|
| 159 |
-
seed: int,
|
| 160 |
-
low_threshold: int,
|
| 161 |
-
high_threshold: int,
|
| 162 |
-
) -> list[PIL.Image.Image]:
|
| 163 |
-
control_image, vis_control_image = self.preprocess_canny(
|
| 164 |
-
input_image=input_image,
|
| 165 |
-
image_resolution=image_resolution,
|
| 166 |
-
low_threshold=low_threshold,
|
| 167 |
-
high_threshold=high_threshold,
|
| 168 |
-
)
|
| 169 |
-
self.load_controlnet_weight('canny')
|
| 170 |
-
results = self.run_pipe(
|
| 171 |
-
prompt=self.get_prompt(prompt, additional_prompt),
|
| 172 |
-
negative_prompt=negative_prompt,
|
| 173 |
-
control_image=control_image,
|
| 174 |
-
num_images=num_images,
|
| 175 |
-
num_steps=num_steps,
|
| 176 |
-
guidance_scale=guidance_scale,
|
| 177 |
-
seed=seed,
|
| 178 |
-
)
|
| 179 |
-
return [vis_control_image] + results
|
| 180 |
-
|
| 181 |
-
@staticmethod
|
| 182 |
-
def preprocess_hough(
|
| 183 |
-
input_image: np.ndarray,
|
| 184 |
-
image_resolution: int,
|
| 185 |
-
detect_resolution: int,
|
| 186 |
-
value_threshold: float,
|
| 187 |
-
distance_threshold: float,
|
| 188 |
-
) -> tuple[PIL.Image.Image, PIL.Image.Image]:
|
| 189 |
-
input_image = HWC3(input_image)
|
| 190 |
-
control_image = apply_mlsd(
|
| 191 |
-
resize_image(input_image, detect_resolution), value_threshold,
|
| 192 |
-
distance_threshold)
|
| 193 |
-
control_image = HWC3(control_image)
|
| 194 |
-
image = resize_image(input_image, image_resolution)
|
| 195 |
-
H, W = image.shape[:2]
|
| 196 |
-
control_image = cv2.resize(control_image, (W, H),
|
| 197 |
-
interpolation=cv2.INTER_NEAREST)
|
| 198 |
-
|
| 199 |
-
vis_control_image = 255 - cv2.dilate(
|
| 200 |
-
control_image, np.ones(shape=(3, 3), dtype=np.uint8), iterations=1)
|
| 201 |
-
|
| 202 |
-
return PIL.Image.fromarray(control_image), PIL.Image.fromarray(
|
| 203 |
-
vis_control_image)
|
| 204 |
-
|
| 205 |
-
@torch.inference_mode()
|
| 206 |
-
def process_hough(
|
| 207 |
-
self,
|
| 208 |
-
input_image: np.ndarray,
|
| 209 |
-
prompt: str,
|
| 210 |
-
additional_prompt: str,
|
| 211 |
-
negative_prompt: str,
|
| 212 |
-
num_images: int,
|
| 213 |
-
image_resolution: int,
|
| 214 |
-
detect_resolution: int,
|
| 215 |
-
num_steps: int,
|
| 216 |
-
guidance_scale: float,
|
| 217 |
-
seed: int,
|
| 218 |
-
value_threshold: float,
|
| 219 |
-
distance_threshold: float,
|
| 220 |
-
) -> list[PIL.Image.Image]:
|
| 221 |
-
control_image, vis_control_image = self.preprocess_hough(
|
| 222 |
-
input_image=input_image,
|
| 223 |
-
image_resolution=image_resolution,
|
| 224 |
-
detect_resolution=detect_resolution,
|
| 225 |
-
value_threshold=value_threshold,
|
| 226 |
-
distance_threshold=distance_threshold,
|
| 227 |
-
)
|
| 228 |
-
self.load_controlnet_weight('hough')
|
| 229 |
-
results = self.run_pipe(
|
| 230 |
-
prompt=self.get_prompt(prompt, additional_prompt),
|
| 231 |
-
negative_prompt=negative_prompt,
|
| 232 |
-
control_image=control_image,
|
| 233 |
-
num_images=num_images,
|
| 234 |
-
num_steps=num_steps,
|
| 235 |
-
guidance_scale=guidance_scale,
|
| 236 |
-
seed=seed,
|
| 237 |
-
)
|
| 238 |
-
return [vis_control_image] + results
|
| 239 |
-
|
| 240 |
-
@staticmethod
|
| 241 |
-
def preprocess_hed(
|
| 242 |
-
input_image: np.ndarray,
|
| 243 |
-
image_resolution: int,
|
| 244 |
-
detect_resolution: int,
|
| 245 |
-
) -> tuple[PIL.Image.Image, PIL.Image.Image]:
|
| 246 |
-
input_image = HWC3(input_image)
|
| 247 |
-
control_image = apply_hed(resize_image(input_image, detect_resolution))
|
| 248 |
-
control_image = HWC3(control_image)
|
| 249 |
-
image = resize_image(input_image, image_resolution)
|
| 250 |
-
H, W = image.shape[:2]
|
| 251 |
-
control_image = cv2.resize(control_image, (W, H),
|
| 252 |
-
interpolation=cv2.INTER_LINEAR)
|
| 253 |
-
return PIL.Image.fromarray(control_image), PIL.Image.fromarray(
|
| 254 |
-
control_image)
|
| 255 |
-
|
| 256 |
-
@torch.inference_mode()
|
| 257 |
-
def process_hed(
|
| 258 |
-
self,
|
| 259 |
-
input_image: np.ndarray,
|
| 260 |
-
prompt: str,
|
| 261 |
-
additional_prompt: str,
|
| 262 |
-
negative_prompt: str,
|
| 263 |
-
num_images: int,
|
| 264 |
-
image_resolution: int,
|
| 265 |
-
detect_resolution: int,
|
| 266 |
-
num_steps: int,
|
| 267 |
-
guidance_scale: float,
|
| 268 |
-
seed: int,
|
| 269 |
-
) -> list[PIL.Image.Image]:
|
| 270 |
-
control_image, vis_control_image = self.preprocess_hed(
|
| 271 |
-
input_image=input_image,
|
| 272 |
-
image_resolution=image_resolution,
|
| 273 |
-
detect_resolution=detect_resolution,
|
| 274 |
-
)
|
| 275 |
-
self.load_controlnet_weight('hed')
|
| 276 |
-
results = self.run_pipe(
|
| 277 |
-
prompt=self.get_prompt(prompt, additional_prompt),
|
| 278 |
-
negative_prompt=negative_prompt,
|
| 279 |
-
control_image=control_image,
|
| 280 |
-
num_images=num_images,
|
| 281 |
-
num_steps=num_steps,
|
| 282 |
-
guidance_scale=guidance_scale,
|
| 283 |
-
seed=seed,
|
| 284 |
-
)
|
| 285 |
-
return [vis_control_image] + results
|
| 286 |
-
|
| 287 |
-
@staticmethod
|
| 288 |
-
def preprocess_scribble(
|
| 289 |
-
input_image: np.ndarray,
|
| 290 |
-
image_resolution: int,
|
| 291 |
-
) -> tuple[PIL.Image.Image, PIL.Image.Image]:
|
| 292 |
-
image = resize_image(HWC3(input_image), image_resolution)
|
| 293 |
-
control_image = np.zeros_like(image, dtype=np.uint8)
|
| 294 |
-
control_image[np.min(image, axis=2) < 127] = 255
|
| 295 |
-
vis_control_image = 255 - control_image
|
| 296 |
-
return PIL.Image.fromarray(control_image), PIL.Image.fromarray(
|
| 297 |
-
vis_control_image)
|
| 298 |
-
|
| 299 |
-
@torch.inference_mode()
|
| 300 |
-
def process_scribble(
|
| 301 |
-
self,
|
| 302 |
-
input_image: np.ndarray,
|
| 303 |
-
prompt: str,
|
| 304 |
-
additional_prompt: str,
|
| 305 |
-
negative_prompt: str,
|
| 306 |
-
num_images: int,
|
| 307 |
-
image_resolution: int,
|
| 308 |
-
num_steps: int,
|
| 309 |
-
guidance_scale: float,
|
| 310 |
-
seed: int,
|
| 311 |
-
) -> list[PIL.Image.Image]:
|
| 312 |
-
control_image, vis_control_image = self.preprocess_scribble(
|
| 313 |
-
input_image=input_image,
|
| 314 |
-
image_resolution=image_resolution,
|
| 315 |
-
)
|
| 316 |
-
self.load_controlnet_weight('scribble')
|
| 317 |
-
results = self.run_pipe(
|
| 318 |
-
prompt=self.get_prompt(prompt, additional_prompt),
|
| 319 |
-
negative_prompt=negative_prompt,
|
| 320 |
-
control_image=control_image,
|
| 321 |
-
num_images=num_images,
|
| 322 |
-
num_steps=num_steps,
|
| 323 |
-
guidance_scale=guidance_scale,
|
| 324 |
-
seed=seed,
|
| 325 |
-
)
|
| 326 |
-
return [vis_control_image] + results
|
| 327 |
-
|
| 328 |
-
@staticmethod
|
| 329 |
-
def preprocess_scribble_interactive(
|
| 330 |
-
input_image: np.ndarray,
|
| 331 |
-
image_resolution: int,
|
| 332 |
-
) -> tuple[PIL.Image.Image, PIL.Image.Image]:
|
| 333 |
-
image = resize_image(HWC3(input_image['mask'][:, :, 0]),
|
| 334 |
-
image_resolution)
|
| 335 |
-
control_image = np.zeros_like(image, dtype=np.uint8)
|
| 336 |
-
control_image[np.min(image, axis=2) > 127] = 255
|
| 337 |
-
vis_control_image = 255 - control_image
|
| 338 |
-
return PIL.Image.fromarray(control_image), PIL.Image.fromarray(
|
| 339 |
-
vis_control_image)
|
| 340 |
-
|
| 341 |
-
@torch.inference_mode()
|
| 342 |
-
def process_scribble_interactive(
|
| 343 |
-
self,
|
| 344 |
-
input_image: np.ndarray,
|
| 345 |
-
prompt: str,
|
| 346 |
-
additional_prompt: str,
|
| 347 |
-
negative_prompt: str,
|
| 348 |
-
num_images: int,
|
| 349 |
-
image_resolution: int,
|
| 350 |
-
num_steps: int,
|
| 351 |
-
guidance_scale: float,
|
| 352 |
-
seed: int,
|
| 353 |
-
) -> list[PIL.Image.Image]:
|
| 354 |
-
control_image, vis_control_image = self.preprocess_scribble_interactive(
|
| 355 |
-
input_image=input_image,
|
| 356 |
-
image_resolution=image_resolution,
|
| 357 |
-
)
|
| 358 |
-
self.load_controlnet_weight('scribble')
|
| 359 |
-
results = self.run_pipe(
|
| 360 |
-
prompt=self.get_prompt(prompt, additional_prompt),
|
| 361 |
-
negative_prompt=negative_prompt,
|
| 362 |
-
control_image=control_image,
|
| 363 |
-
num_images=num_images,
|
| 364 |
-
num_steps=num_steps,
|
| 365 |
-
guidance_scale=guidance_scale,
|
| 366 |
-
seed=seed,
|
| 367 |
-
)
|
| 368 |
-
return [vis_control_image] + results
|
| 369 |
-
|
| 370 |
-
@staticmethod
|
| 371 |
-
def preprocess_fake_scribble(
|
| 372 |
-
input_image: np.ndarray,
|
| 373 |
-
image_resolution: int,
|
| 374 |
-
detect_resolution: int,
|
| 375 |
-
) -> tuple[PIL.Image.Image, PIL.Image.Image]:
|
| 376 |
-
input_image = HWC3(input_image)
|
| 377 |
-
control_image = apply_hed(resize_image(input_image, detect_resolution))
|
| 378 |
-
control_image = HWC3(control_image)
|
| 379 |
-
image = resize_image(input_image, image_resolution)
|
| 380 |
-
H, W = image.shape[:2]
|
| 381 |
-
|
| 382 |
-
control_image = cv2.resize(control_image, (W, H),
|
| 383 |
-
interpolation=cv2.INTER_LINEAR)
|
| 384 |
-
control_image = nms(control_image, 127, 3.0)
|
| 385 |
-
control_image = cv2.GaussianBlur(control_image, (0, 0), 3.0)
|
| 386 |
-
control_image[control_image > 4] = 255
|
| 387 |
-
control_image[control_image < 255] = 0
|
| 388 |
-
|
| 389 |
-
vis_control_image = 255 - control_image
|
| 390 |
-
|
| 391 |
-
return PIL.Image.fromarray(control_image), PIL.Image.fromarray(
|
| 392 |
-
vis_control_image)
|
| 393 |
-
|
| 394 |
-
@torch.inference_mode()
|
| 395 |
-
def process_fake_scribble(
|
| 396 |
-
self,
|
| 397 |
-
input_image: np.ndarray,
|
| 398 |
-
prompt: str,
|
| 399 |
-
additional_prompt: str,
|
| 400 |
-
negative_prompt: str,
|
| 401 |
-
num_images: int,
|
| 402 |
-
image_resolution: int,
|
| 403 |
-
detect_resolution: int,
|
| 404 |
-
num_steps: int,
|
| 405 |
-
guidance_scale: float,
|
| 406 |
-
seed: int,
|
| 407 |
-
) -> list[PIL.Image.Image]:
|
| 408 |
-
control_image, vis_control_image = self.preprocess_fake_scribble(
|
| 409 |
-
input_image=input_image,
|
| 410 |
-
image_resolution=image_resolution,
|
| 411 |
-
detect_resolution=detect_resolution,
|
| 412 |
-
)
|
| 413 |
-
self.load_controlnet_weight('scribble')
|
| 414 |
-
results = self.run_pipe(
|
| 415 |
-
prompt=self.get_prompt(prompt, additional_prompt),
|
| 416 |
-
negative_prompt=negative_prompt,
|
| 417 |
-
control_image=control_image,
|
| 418 |
-
num_images=num_images,
|
| 419 |
-
num_steps=num_steps,
|
| 420 |
-
guidance_scale=guidance_scale,
|
| 421 |
-
seed=seed,
|
| 422 |
-
)
|
| 423 |
-
return [vis_control_image] + results
|
| 424 |
-
|
| 425 |
-
@staticmethod
|
| 426 |
-
def preprocess_pose(
|
| 427 |
-
input_image: np.ndarray,
|
| 428 |
-
image_resolution: int,
|
| 429 |
-
detect_resolution: int,
|
| 430 |
-
is_pose_image: bool,
|
| 431 |
-
) -> tuple[PIL.Image.Image, PIL.Image.Image]:
|
| 432 |
-
input_image = HWC3(input_image)
|
| 433 |
-
if not is_pose_image:
|
| 434 |
-
control_image, _ = apply_openpose(
|
| 435 |
-
resize_image(input_image, detect_resolution))
|
| 436 |
-
control_image = HWC3(control_image)
|
| 437 |
-
image = resize_image(input_image, image_resolution)
|
| 438 |
-
H, W = image.shape[:2]
|
| 439 |
-
control_image = cv2.resize(control_image, (W, H),
|
| 440 |
-
interpolation=cv2.INTER_NEAREST)
|
| 441 |
-
else:
|
| 442 |
-
control_image = resize_image(input_image, image_resolution)
|
| 443 |
-
|
| 444 |
-
return PIL.Image.fromarray(control_image), PIL.Image.fromarray(
|
| 445 |
-
control_image)
|
| 446 |
-
|
| 447 |
-
@torch.inference_mode()
|
| 448 |
-
def process_pose(
|
| 449 |
-
self,
|
| 450 |
-
input_image: np.ndarray,
|
| 451 |
-
prompt: str,
|
| 452 |
-
additional_prompt: str,
|
| 453 |
-
negative_prompt: str,
|
| 454 |
-
num_images: int,
|
| 455 |
-
image_resolution: int,
|
| 456 |
-
detect_resolution: int,
|
| 457 |
-
num_steps: int,
|
| 458 |
-
guidance_scale: float,
|
| 459 |
-
seed: int,
|
| 460 |
-
is_pose_image: bool,
|
| 461 |
-
) -> list[PIL.Image.Image]:
|
| 462 |
-
control_image, vis_control_image = self.preprocess_pose(
|
| 463 |
-
input_image=input_image,
|
| 464 |
-
image_resolution=image_resolution,
|
| 465 |
-
detect_resolution=detect_resolution,
|
| 466 |
-
is_pose_image=is_pose_image,
|
| 467 |
-
)
|
| 468 |
-
self.load_controlnet_weight('pose')
|
| 469 |
-
results = self.run_pipe(
|
| 470 |
-
prompt=self.get_prompt(prompt, additional_prompt),
|
| 471 |
-
negative_prompt=negative_prompt,
|
| 472 |
-
control_image=control_image,
|
| 473 |
-
num_images=num_images,
|
| 474 |
-
num_steps=num_steps,
|
| 475 |
-
guidance_scale=guidance_scale,
|
| 476 |
-
seed=seed,
|
| 477 |
-
)
|
| 478 |
-
return [vis_control_image] + results
|
| 479 |
-
|
| 480 |
-
@staticmethod
|
| 481 |
-
def preprocess_seg(
|
| 482 |
-
input_image: np.ndarray,
|
| 483 |
-
image_resolution: int,
|
| 484 |
-
detect_resolution: int,
|
| 485 |
-
is_segmentation_map: bool,
|
| 486 |
-
) -> tuple[PIL.Image.Image, PIL.Image.Image]:
|
| 487 |
-
input_image = HWC3(input_image)
|
| 488 |
-
if not is_segmentation_map:
|
| 489 |
-
control_image = apply_uniformer(
|
| 490 |
-
resize_image(input_image, detect_resolution))
|
| 491 |
-
image = resize_image(input_image, image_resolution)
|
| 492 |
-
H, W = image.shape[:2]
|
| 493 |
-
control_image = cv2.resize(control_image, (W, H),
|
| 494 |
-
interpolation=cv2.INTER_NEAREST)
|
| 495 |
-
else:
|
| 496 |
-
control_image = resize_image(input_image, image_resolution)
|
| 497 |
-
return PIL.Image.fromarray(control_image), PIL.Image.fromarray(
|
| 498 |
-
control_image)
|
| 499 |
-
|
| 500 |
-
@torch.inference_mode()
|
| 501 |
-
def process_seg(
|
| 502 |
-
self,
|
| 503 |
-
input_image: np.ndarray,
|
| 504 |
-
prompt: str,
|
| 505 |
-
additional_prompt: str,
|
| 506 |
-
negative_prompt: str,
|
| 507 |
-
num_images: int,
|
| 508 |
-
image_resolution: int,
|
| 509 |
-
detect_resolution: int,
|
| 510 |
-
num_steps: int,
|
| 511 |
-
guidance_scale: float,
|
| 512 |
-
seed: int,
|
| 513 |
-
is_segmentation_map: bool,
|
| 514 |
-
) -> list[PIL.Image.Image]:
|
| 515 |
-
control_image, vis_control_image = self.preprocess_seg(
|
| 516 |
-
input_image=input_image,
|
| 517 |
-
image_resolution=image_resolution,
|
| 518 |
-
detect_resolution=detect_resolution,
|
| 519 |
-
is_segmentation_map=is_segmentation_map,
|
| 520 |
-
)
|
| 521 |
-
self.load_controlnet_weight('seg')
|
| 522 |
-
results = self.run_pipe(
|
| 523 |
-
prompt=self.get_prompt(prompt, additional_prompt),
|
| 524 |
-
negative_prompt=negative_prompt,
|
| 525 |
-
control_image=control_image,
|
| 526 |
-
num_images=num_images,
|
| 527 |
-
num_steps=num_steps,
|
| 528 |
-
guidance_scale=guidance_scale,
|
| 529 |
-
seed=seed,
|
| 530 |
-
)
|
| 531 |
-
return [vis_control_image] + results
|
| 532 |
-
|
| 533 |
@staticmethod
|
| 534 |
def preprocess_depth(
|
| 535 |
input_image: np.ndarray,
|
|
@@ -583,61 +179,3 @@ class Model:
|
|
| 583 |
seed=seed,
|
| 584 |
)
|
| 585 |
return [vis_control_image] + results
|
| 586 |
-
|
| 587 |
-
@staticmethod
|
| 588 |
-
def preprocess_normal(
|
| 589 |
-
input_image: np.ndarray,
|
| 590 |
-
image_resolution: int,
|
| 591 |
-
detect_resolution: int,
|
| 592 |
-
bg_threshold: float,
|
| 593 |
-
is_normal_image: bool,
|
| 594 |
-
) -> tuple[PIL.Image.Image, PIL.Image.Image]:
|
| 595 |
-
input_image = HWC3(input_image)
|
| 596 |
-
if not is_normal_image:
|
| 597 |
-
_, control_image = apply_midas(resize_image(
|
| 598 |
-
input_image, detect_resolution),
|
| 599 |
-
bg_th=bg_threshold)
|
| 600 |
-
control_image = HWC3(control_image)
|
| 601 |
-
image = resize_image(input_image, image_resolution)
|
| 602 |
-
H, W = image.shape[:2]
|
| 603 |
-
control_image = cv2.resize(control_image, (W, H),
|
| 604 |
-
interpolation=cv2.INTER_LINEAR)
|
| 605 |
-
else:
|
| 606 |
-
control_image = resize_image(input_image, image_resolution)
|
| 607 |
-
return PIL.Image.fromarray(control_image), PIL.Image.fromarray(
|
| 608 |
-
control_image)
|
| 609 |
-
|
| 610 |
-
@torch.inference_mode()
|
| 611 |
-
def process_normal(
|
| 612 |
-
self,
|
| 613 |
-
input_image: np.ndarray,
|
| 614 |
-
prompt: str,
|
| 615 |
-
additional_prompt: str,
|
| 616 |
-
negative_prompt: str,
|
| 617 |
-
num_images: int,
|
| 618 |
-
image_resolution: int,
|
| 619 |
-
detect_resolution: int,
|
| 620 |
-
num_steps: int,
|
| 621 |
-
guidance_scale: float,
|
| 622 |
-
seed: int,
|
| 623 |
-
bg_threshold: float,
|
| 624 |
-
is_normal_image: bool,
|
| 625 |
-
) -> list[PIL.Image.Image]:
|
| 626 |
-
control_image, vis_control_image = self.preprocess_normal(
|
| 627 |
-
input_image=input_image,
|
| 628 |
-
image_resolution=image_resolution,
|
| 629 |
-
detect_resolution=detect_resolution,
|
| 630 |
-
bg_threshold=bg_threshold,
|
| 631 |
-
is_normal_image=is_normal_image,
|
| 632 |
-
)
|
| 633 |
-
self.load_controlnet_weight('normal')
|
| 634 |
-
results = self.run_pipe(
|
| 635 |
-
prompt=self.get_prompt(prompt, additional_prompt),
|
| 636 |
-
negative_prompt=negative_prompt,
|
| 637 |
-
control_image=control_image,
|
| 638 |
-
num_images=num_images,
|
| 639 |
-
num_steps=num_steps,
|
| 640 |
-
guidance_scale=guidance_scale,
|
| 641 |
-
seed=seed,
|
| 642 |
-
)
|
| 643 |
-
return [vis_control_image] + results
|
|
|
|
| 27 |
from annotator.util import HWC3, resize_image
|
| 28 |
|
| 29 |
CONTROLNET_MODEL_IDS = {
|
| 30 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
'depth': 'lllyasviel/sd-controlnet-depth',
|
| 32 |
+
|
| 33 |
}
|
| 34 |
|
| 35 |
|
|
|
|
| 126 |
generator=generator,
|
| 127 |
image=control_image).images
|
| 128 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 129 |
@staticmethod
|
| 130 |
def preprocess_depth(
|
| 131 |
input_image: np.ndarray,
|
|
|
|
| 179 |
seed=seed,
|
| 180 |
)
|
| 181 |
return [vis_control_image] + results
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|