from sentence_transformers import SentenceTransformer class SentenceEncoder: def __init__(self, model_name='l3cube-pune/indic-sentence-similarity-sbert'): try: self.model = SentenceTransformer(model_name) print(f"✅ Model '{model_name}' loaded successfully.") except Exception as e: print(f"❌ Error loading model: {e}") self.model = None def encode(self, texts, batch_size=32, show_progress_bar=False): if self.model is None: return None return self.model.encode(texts, batch_size=batch_size, show_progress_bar=show_progress_bar, convert_to_tensor=True)