Spaces:
Sleeping
Sleeping
Update main.py
Browse files
main.py
CHANGED
|
@@ -8,15 +8,27 @@ import firebase_admin
|
|
| 8 |
from firebase_admin import credentials, firestore
|
| 9 |
|
| 10 |
from encoder import SentenceEncoder
|
| 11 |
-
from
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
class UserProfile(BaseModel):
|
| 17 |
-
user_id: str
|
| 18 |
skills: List[str] = Field(..., example=["python", "data analysis"])
|
| 19 |
-
|
| 20 |
|
| 21 |
class SearchQuery(BaseModel):
|
| 22 |
query: str = Field(..., example="marketing internship in mumbai")
|
|
@@ -37,20 +49,22 @@ class StatusResponse(BaseModel):
|
|
| 37 |
status: str
|
| 38 |
internship_id: str
|
| 39 |
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
class ChatResponse(BaseModel):
|
| 44 |
-
response: str
|
| 45 |
-
|
| 46 |
-
# --- FastAPI App Initialization ---
|
| 47 |
app = FastAPI(
|
| 48 |
-
title="Internship Recommendation
|
| 49 |
-
description="An API using Firestore for metadata, ChromaDB for vector search
|
| 50 |
-
version="
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
)
|
| 52 |
|
| 53 |
-
#
|
|
|
|
|
|
|
| 54 |
db = None
|
| 55 |
try:
|
| 56 |
firebase_creds = os.getenv("FIREBASE_CREDS_JSON")
|
|
@@ -62,66 +76,67 @@ try:
|
|
| 62 |
db = firestore.client()
|
| 63 |
print("β
Firebase initialized with Hugging Face secret.")
|
| 64 |
else:
|
| 65 |
-
|
| 66 |
-
cred = credentials.Certificate('serviceAccountKey.json')
|
| 67 |
-
if not firebase_admin._apps:
|
| 68 |
-
firebase_admin.initialize_app(cred)
|
| 69 |
-
db = firestore.client()
|
| 70 |
-
print("β
Firebase initialized with local key file.")
|
| 71 |
except Exception as e:
|
| 72 |
-
print(f"β Could not initialize Firebase
|
| 73 |
|
| 74 |
def get_db():
|
| 75 |
if db is None:
|
| 76 |
raise HTTPException(status_code=503, detail="Firestore connection not available.")
|
| 77 |
return db
|
| 78 |
|
| 79 |
-
#
|
|
|
|
|
|
|
| 80 |
encoder = None
|
| 81 |
chroma_collection = None
|
| 82 |
|
| 83 |
@app.on_event("startup")
|
| 84 |
def load_model_and_data():
|
| 85 |
global encoder, chroma_collection
|
| 86 |
-
|
| 87 |
print("π Loading sentence encoder model...")
|
| 88 |
encoder = SentenceEncoder()
|
| 89 |
|
| 90 |
-
#
|
| 91 |
-
# Point ChromaDB to the correct writable persistent storage path on Hugging Face
|
| 92 |
chroma_db_path = "/data/chroma_db"
|
| 93 |
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
llm_handler.chroma_collection = chroma_collection
|
| 103 |
-
|
| 104 |
-
# Initialize the LLM
|
| 105 |
-
initialize_llm()
|
| 106 |
|
| 107 |
-
#
|
|
|
|
|
|
|
| 108 |
@app.get("/")
|
| 109 |
def read_root():
|
| 110 |
return {"message": "Welcome to the Internship Recommendation API!"}
|
| 111 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 112 |
@app.post("/setup")
|
| 113 |
-
def run_initial_setup(secret_key: str = Query(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 114 |
correct_key = os.getenv("SETUP_SECRET_KEY")
|
| 115 |
if not correct_key or secret_key != correct_key:
|
| 116 |
raise HTTPException(status_code=403, detail="Invalid secret key.")
|
|
|
|
| 117 |
try:
|
| 118 |
print("--- RUNNING DATABASE POPULATION SCRIPT ---")
|
| 119 |
populate_vector_db()
|
| 120 |
print("--- SETUP COMPLETE ---")
|
| 121 |
return {"status": "Setup completed successfully."}
|
| 122 |
except Exception as e:
|
| 123 |
-
raise HTTPException(status_code=500, detail=f"An error occurred: {str(e)}")
|
| 124 |
-
|
| 125 |
|
| 126 |
@app.post("/add-internship", response_model=StatusResponse)
|
| 127 |
def add_internship(internship: InternshipData, db_client: firestore.Client = Depends(get_db)):
|
|
@@ -143,14 +158,21 @@ def add_internship(internship: InternshipData, db_client: firestore.Client = Dep
|
|
| 143 |
def get_profile_recommendations(profile: UserProfile):
|
| 144 |
if chroma_collection is None or encoder is None:
|
| 145 |
raise HTTPException(status_code=503, detail="Server is not ready.")
|
| 146 |
-
|
|
|
|
| 147 |
query_embedding = encoder.encode([query_text])[0].tolist()
|
| 148 |
results = chroma_collection.query(query_embeddings=[query_embedding], n_results=3)
|
|
|
|
| 149 |
recommendations = []
|
| 150 |
ids = results.get('ids', [[]])[0]
|
| 151 |
distances = results.get('distances', [[]])[0]
|
|
|
|
| 152 |
for i, internship_id in enumerate(ids):
|
| 153 |
-
recommendations.append({
|
|
|
|
|
|
|
|
|
|
|
|
|
| 154 |
return {"recommendations": recommendations}
|
| 155 |
|
| 156 |
@app.post("/search", response_model=RecommendationResponse)
|
|
@@ -164,9 +186,4 @@ def search_internships(search: SearchQuery):
|
|
| 164 |
distances = results.get('distances', [[]])[0]
|
| 165 |
for i, internship_id in enumerate(ids):
|
| 166 |
recommendations.append({"internship_id": internship_id, "score": 1 - distances[i]})
|
| 167 |
-
return {"recommendations": recommendations}
|
| 168 |
-
|
| 169 |
-
@app.post("/chat", response_model=ChatResponse)
|
| 170 |
-
def chat_with_bot(message: ChatMessage):
|
| 171 |
-
response = get_rag_response(message.query)
|
| 172 |
-
return {"response": response}
|
|
|
|
| 8 |
from firebase_admin import credentials, firestore
|
| 9 |
|
| 10 |
from encoder import SentenceEncoder
|
| 11 |
+
from populate_chroma import populate_vector_db
|
| 12 |
+
|
| 13 |
+
# --------------------------------------------------------------------
|
| 14 |
+
# Cache setup (store HF models in /data for persistence on Hugging Face)
|
| 15 |
+
# --------------------------------------------------------------------
|
| 16 |
+
os.environ["HF_HOME"] = "/data/cache"
|
| 17 |
+
os.environ["SENTENCE_TRANSFORMERS_HOME"] = "/data/cache"
|
| 18 |
+
|
| 19 |
+
# --------------------------------------------------------------------
|
| 20 |
+
# Determine root_path dynamically
|
| 21 |
+
# Locally: root_path = ""
|
| 22 |
+
# On Hugging Face Spaces: root_path = "/username/space-name"
|
| 23 |
+
# --------------------------------------------------------------------
|
| 24 |
+
root_path = os.getenv("HF_SPACE_ROOT_PATH", "")
|
| 25 |
+
|
| 26 |
+
# --------------------------------------------------------------------
|
| 27 |
+
# Pydantic Models
|
| 28 |
+
# --------------------------------------------------------------------
|
| 29 |
class UserProfile(BaseModel):
|
|
|
|
| 30 |
skills: List[str] = Field(..., example=["python", "data analysis"])
|
| 31 |
+
sectors: List[str] = Field(..., example=["machine learning", "web development"])
|
| 32 |
|
| 33 |
class SearchQuery(BaseModel):
|
| 34 |
query: str = Field(..., example="marketing internship in mumbai")
|
|
|
|
| 49 |
status: str
|
| 50 |
internship_id: str
|
| 51 |
|
| 52 |
+
# --------------------------------------------------------------------
|
| 53 |
+
# FastAPI App
|
| 54 |
+
# --------------------------------------------------------------------
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
app = FastAPI(
|
| 56 |
+
title="Internship Recommendation API",
|
| 57 |
+
description="An API using Firestore for metadata, and ChromaDB for vector search.",
|
| 58 |
+
version="2.2.0",
|
| 59 |
+
docs_url="/docs", # Swagger UI
|
| 60 |
+
redoc_url="/redoc", # ReDoc
|
| 61 |
+
openapi_url="/openapi.json", # OpenAPI schema
|
| 62 |
+
root_path=root_path # β
Fix for Hugging Face Spaces subpath issue
|
| 63 |
)
|
| 64 |
|
| 65 |
+
# --------------------------------------------------------------------
|
| 66 |
+
# Firebase Initialization
|
| 67 |
+
# --------------------------------------------------------------------
|
| 68 |
db = None
|
| 69 |
try:
|
| 70 |
firebase_creds = os.getenv("FIREBASE_CREDS_JSON")
|
|
|
|
| 76 |
db = firestore.client()
|
| 77 |
print("β
Firebase initialized with Hugging Face secret.")
|
| 78 |
else:
|
| 79 |
+
raise Exception("FIREBASE_CREDS_JSON not found")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
except Exception as e:
|
| 81 |
+
print(f"β Could not initialize Firebase: {e}")
|
| 82 |
|
| 83 |
def get_db():
|
| 84 |
if db is None:
|
| 85 |
raise HTTPException(status_code=503, detail="Firestore connection not available.")
|
| 86 |
return db
|
| 87 |
|
| 88 |
+
# --------------------------------------------------------------------
|
| 89 |
+
# Global Variables (encoder + chroma)
|
| 90 |
+
# --------------------------------------------------------------------
|
| 91 |
encoder = None
|
| 92 |
chroma_collection = None
|
| 93 |
|
| 94 |
@app.on_event("startup")
|
| 95 |
def load_model_and_data():
|
| 96 |
global encoder, chroma_collection
|
|
|
|
| 97 |
print("π Loading sentence encoder model...")
|
| 98 |
encoder = SentenceEncoder()
|
| 99 |
|
| 100 |
+
# Point ChromaDB to the persistent /data storage path
|
|
|
|
| 101 |
chroma_db_path = "/data/chroma_db"
|
| 102 |
|
| 103 |
+
try:
|
| 104 |
+
client = chromadb.PersistentClient(path=chroma_db_path)
|
| 105 |
+
chroma_collection = client.get_or_create_collection(name="internships")
|
| 106 |
+
print("β
ChromaDB client initialized and collection is ready.")
|
| 107 |
+
print(f" - Internships in DB: {chroma_collection.count()}")
|
| 108 |
+
except Exception as e:
|
| 109 |
+
print(f"β Error initializing ChromaDB: {e}")
|
| 110 |
+
raise
|
|
|
|
|
|
|
|
|
|
|
|
|
| 111 |
|
| 112 |
+
# --------------------------------------------------------------------
|
| 113 |
+
# Endpoints
|
| 114 |
+
# --------------------------------------------------------------------
|
| 115 |
@app.get("/")
|
| 116 |
def read_root():
|
| 117 |
return {"message": "Welcome to the Internship Recommendation API!"}
|
| 118 |
|
| 119 |
+
@app.get("/healthz")
|
| 120 |
+
def health_check():
|
| 121 |
+
return {"status": "ok"}
|
| 122 |
+
|
| 123 |
@app.post("/setup")
|
| 124 |
+
def run_initial_setup(secret_key: str = Query(..., example="your_secret_password")):
|
| 125 |
+
"""
|
| 126 |
+
A secret endpoint to run the initial database setup.
|
| 127 |
+
This should only be run once after deployment.
|
| 128 |
+
"""
|
| 129 |
correct_key = os.getenv("SETUP_SECRET_KEY")
|
| 130 |
if not correct_key or secret_key != correct_key:
|
| 131 |
raise HTTPException(status_code=403, detail="Invalid secret key.")
|
| 132 |
+
|
| 133 |
try:
|
| 134 |
print("--- RUNNING DATABASE POPULATION SCRIPT ---")
|
| 135 |
populate_vector_db()
|
| 136 |
print("--- SETUP COMPLETE ---")
|
| 137 |
return {"status": "Setup completed successfully."}
|
| 138 |
except Exception as e:
|
| 139 |
+
raise HTTPException(status_code=500, detail=f"An error occurred during setup: {str(e)}")
|
|
|
|
| 140 |
|
| 141 |
@app.post("/add-internship", response_model=StatusResponse)
|
| 142 |
def add_internship(internship: InternshipData, db_client: firestore.Client = Depends(get_db)):
|
|
|
|
| 158 |
def get_profile_recommendations(profile: UserProfile):
|
| 159 |
if chroma_collection is None or encoder is None:
|
| 160 |
raise HTTPException(status_code=503, detail="Server is not ready.")
|
| 161 |
+
|
| 162 |
+
query_text = f"Skills: {', '.join(profile.skills)}. Sectors: {', '.join(profile.sectors)}"
|
| 163 |
query_embedding = encoder.encode([query_text])[0].tolist()
|
| 164 |
results = chroma_collection.query(query_embeddings=[query_embedding], n_results=3)
|
| 165 |
+
|
| 166 |
recommendations = []
|
| 167 |
ids = results.get('ids', [[]])[0]
|
| 168 |
distances = results.get('distances', [[]])[0]
|
| 169 |
+
|
| 170 |
for i, internship_id in enumerate(ids):
|
| 171 |
+
recommendations.append({
|
| 172 |
+
"internship_id": internship_id,
|
| 173 |
+
"score": 1 - distances[i]
|
| 174 |
+
})
|
| 175 |
+
|
| 176 |
return {"recommendations": recommendations}
|
| 177 |
|
| 178 |
@app.post("/search", response_model=RecommendationResponse)
|
|
|
|
| 186 |
distances = results.get('distances', [[]])[0]
|
| 187 |
for i, internship_id in enumerate(ids):
|
| 188 |
recommendations.append({"internship_id": internship_id, "score": 1 - distances[i]})
|
| 189 |
+
return {"recommendations": recommendations}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|