Spaces:
Running
Running
| import numpy as np | |
| import matplotlib.pyplot as plt | |
| from PIL import Image, ImageDraw, ImageFont | |
| import librosa | |
| import librosa.display | |
| import gradio as gr | |
| import soundfile as sf | |
| import os | |
| # Function for creating a spectrogram image with text | |
| def text_to_spectrogram_image(text, base_width=512, height=256, max_font_size=80, margin=10, letter_spacing=5): | |
| font_path = "/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf" | |
| if os.path.exists(font_path): | |
| font = ImageFont.truetype(font_path, max_font_size) | |
| else: | |
| font = ImageFont.load_default() | |
| image = Image.new('L', (base_width, height), 'black') | |
| draw = ImageDraw.Draw(image) | |
| text_width = 0 | |
| for char in text: | |
| text_bbox = draw.textbbox((0, 0), char, font=font) | |
| text_width += text_bbox[2] - text_bbox[0] + letter_spacing | |
| text_width -= letter_spacing | |
| if text_width + margin * 2 > base_width: | |
| width = text_width + margin * 2 | |
| else: | |
| width = base_width | |
| image = Image.new('L', (width, height), 'black') | |
| draw = ImageDraw.Draw(image) | |
| text_x = (width - text_width) // 2 | |
| text_y = (height - (text_bbox[3] - text_bbox[1])) // 2 | |
| for char in text: | |
| draw.text((text_x, text_y), char, font=font, fill='white') | |
| char_bbox = draw.textbbox((0, 0), char, font=font) | |
| text_x += char_bbox[2] - char_bbox[0] + letter_spacing | |
| image = np.array(image) | |
| image = np.where(image > 0, 255, image) | |
| return image | |
| # Converting an image to audio | |
| def spectrogram_image_to_audio(image, sr=22050): | |
| flipped_image = np.flipud(image) | |
| S = flipped_image.astype(np.float32) / 255.0 * 100.0 | |
| y = librosa.griffinlim(S) | |
| return y | |
| # Function for creating an audio file and spectrogram from text | |
| def create_audio_with_spectrogram(text, base_width, height, max_font_size, margin, letter_spacing): | |
| spec_image = text_to_spectrogram_image(text, base_width, height, max_font_size, margin, letter_spacing) | |
| y = spectrogram_image_to_audio(spec_image) | |
| audio_path = 'output.wav' | |
| sf.write(audio_path, y, 22050) | |
| image_path = 'spectrogram.png' | |
| plt.imsave(image_path, spec_image, cmap='gray') | |
| return audio_path, image_path | |
| # Function for displaying the spectrogram of an audio file | |
| def display_audio_spectrogram(audio_path): | |
| y, sr = librosa.load(audio_path) | |
| S = librosa.feature.melspectrogram(y=y, sr=sr) | |
| S_dB = librosa.power_to_db(S, ref=np.max) | |
| plt.figure(figsize=(10, 4)) | |
| librosa.display.specshow(S_dB) | |
| plt.tight_layout() | |
| spectrogram_path = 'uploaded_spectrogram.png' | |
| plt.savefig(spectrogram_path) | |
| plt.close() | |
| return spectrogram_path | |
| # Converting a downloaded image to an audio spectrogram | |
| def image_to_spectrogram_audio(image_path, sr=22050): | |
| image = Image.open(image_path).convert('L') | |
| image = np.array(image) | |
| y = spectrogram_image_to_audio(image, sr) | |
| img2audio_path = 'image_to_audio_output.wav' | |
| sf.write(img2audio_path, y, sr) | |
| return img2audio_path | |
| # Gradio interface | |
| with gr.Blocks(title='Audio Steganography', theme=gr.themes.Soft(primary_hue="green", secondary_hue="green", spacing_size="sm", radius_size="lg")) as iface: | |
| with gr.Group(): | |
| with gr.Row(variant='panel'): | |
| with gr.Column(): | |
| gr.HTML("<center><h2><a href='https://t.me/pol1trees'>Telegram Channel</a></h2></center>") | |
| with gr.Column(): | |
| gr.HTML("<center><h2><a href='https://t.me/+GMTP7hZqY0E4OGRi'>Telegram Chat</a></h2></center>") | |
| with gr.Column(): | |
| gr.HTML("<center><h2><a href='https://www.youtube.com/channel/UCHb3fZEVxUisnqLqCrEM8ZA'>YouTube</a></h2></center>") | |
| with gr.Column(): | |
| gr.HTML("<center><h2><a href='https://github.com/Bebra777228/Audio-Steganography'>GitHub</a></h2></center>") | |
| with gr.Tab("Text to Spectrogram"): | |
| with gr.Group(): | |
| text = gr.Textbox(lines=2, placeholder="Enter your text:", label="Text") | |
| with gr.Row(variant='panel'): | |
| base_width = gr.Slider(value=512, label="Image Width", visible=False) | |
| height = gr.Slider(value=256, label="Image Height", visible=False) | |
| max_font_size = gr.Slider(minimum=10, maximum=130, step=5, value=80, label="Font size") | |
| margin = gr.Slider(minimum=0, maximum=50, step=1, value=10, label="Indent") | |
| letter_spacing = gr.Slider(minimum=0, maximum=50, step=1, value=5, label="Letter spacing") | |
| generate_button = gr.Button("Generate") | |
| with gr.Column(variant='panel'): | |
| with gr.Group(): | |
| output_audio = gr.Audio(type="filepath", label="Generated audio") | |
| output_image = gr.Image(type="filepath", label="Spectrogram") | |
| def gradio_interface_fn(text, base_width, height, max_font_size, margin, letter_spacing): | |
| print("\n", text) | |
| return create_audio_with_spectrogram(text, base_width, height, max_font_size, margin, letter_spacing) | |
| generate_button.click( | |
| gradio_interface_fn, | |
| inputs=[text, base_width, height, max_font_size, margin, letter_spacing], | |
| outputs=[output_audio, output_image] | |
| ) | |
| with gr.Tab("Image to Spectrogram"): | |
| with gr.Group(): | |
| with gr.Row(variant='panel'): | |
| upload_image = gr.Image(type="filepath", label="Upload image") | |
| convert_button = gr.Button("Convert to audio") | |
| with gr.Column(variant='panel'): | |
| output_audio_from_image = gr.Audio(type="filepath", label="Generated audio") | |
| def gradio_image_to_audio_fn(upload_image): | |
| return image_to_spectrogram_audio(upload_image) | |
| convert_button.click( | |
| gradio_image_to_audio_fn, | |
| inputs=[upload_image], | |
| outputs=[output_audio_from_image] | |
| ) | |
| with gr.Tab("Audio Spectrogram"): | |
| with gr.Group(): | |
| with gr.Row(variant='panel'): | |
| upload_audio = gr.Audio(type="filepath", label="Upload audio", scale=3) | |
| decode_button = gr.Button("Show spectrogram", scale=2) | |
| with gr.Column(variant='panel'): | |
| decoded_image = gr.Image(type="filepath", label="Audio Spectrogram") | |
| def gradio_decode_fn(upload_audio): | |
| return display_audio_spectrogram(upload_audio) | |
| decode_button.click( | |
| gradio_decode_fn, | |
| inputs=[upload_audio], | |
| outputs=[decoded_image] | |
| ) | |
| iface.launch(share=True) | |