Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -24,7 +24,9 @@ nb_samples = 500
|
|
| 24 |
|
| 25 |
field_names_train = ["sig11", "sig22", "sig12", "U1", "U2", "q"]
|
| 26 |
|
| 27 |
-
|
|
|
|
|
|
|
| 28 |
|
| 29 |
|
| 30 |
def sample_info(sample_id_str, fieldn):
|
|
@@ -82,7 +84,24 @@ def sample_info(sample_id_str, fieldn):
|
|
| 82 |
|
| 83 |
str__ = f"Training sample {sample_id_str}\n"
|
| 84 |
str__ += str(plaid_sample)+"\n"
|
| 85 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 86 |
|
| 87 |
return str__, color
|
| 88 |
|
|
@@ -90,17 +109,17 @@ def sample_info(sample_id_str, fieldn):
|
|
| 90 |
if __name__ == "__main__":
|
| 91 |
|
| 92 |
with gr.Blocks() as demo:
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
|
|
|
| 101 |
d1.input(sample_info, [d1, d2], [output1, output2])
|
| 102 |
d2.input(sample_info, [d1, d2], [output1, output2])
|
| 103 |
|
| 104 |
-
|
| 105 |
demo.launch()
|
| 106 |
|
|
|
|
| 24 |
|
| 25 |
field_names_train = ["sig11", "sig22", "sig12", "U1", "U2", "q"]
|
| 26 |
|
| 27 |
+
_HEADER_ = '''
|
| 28 |
+
<h2><b>Visualization demo of <a href='https://huggingface.co/datasets/PLAID-datasets/Tensile2d' target='_blank'><b>Tensile2d dataset</b></b></h2>
|
| 29 |
+
'''
|
| 30 |
|
| 31 |
|
| 32 |
def sample_info(sample_id_str, fieldn):
|
|
|
|
| 84 |
|
| 85 |
str__ = f"Training sample {sample_id_str}\n"
|
| 86 |
str__ += str(plaid_sample)+"\n"
|
| 87 |
+
|
| 88 |
+
if len(hf_dataset.description['in_scalars_names'])>0:
|
| 89 |
+
str__ += "\ninput scalars:\n"
|
| 90 |
+
for sname in hf_dataset.description['in_scalars_names']:
|
| 91 |
+
str__ += f"- {sname}: {plaid_sample.get_scalar(sname)}\n"
|
| 92 |
+
if len(hf_dataset.description['out_scalars_names'])>0:
|
| 93 |
+
str__ += "\noutput scalars:\n"
|
| 94 |
+
for sname in hf_dataset.description['out_scalars_names']:
|
| 95 |
+
str__ += f"- {sname}: {plaid_sample.get_scalar(sname)}\n"
|
| 96 |
+
str__ += f"\n\nMesh number of nodes: {nodes.shape[0]}\n"
|
| 97 |
+
if len(hf_dataset.description['in_fields_names'])>0:
|
| 98 |
+
str__ += "\ninput fields:\n"
|
| 99 |
+
for fname in hf_dataset.description['in_fields_names']:
|
| 100 |
+
str__ += f"- {fname}\n"
|
| 101 |
+
if len(hf_dataset.description['out_fields_names'])>0:
|
| 102 |
+
str__ += "\noutput fields:\n"
|
| 103 |
+
for fname in hf_dataset.description['out_fields_names']:
|
| 104 |
+
str__ += f"- {fname}\n"
|
| 105 |
|
| 106 |
return str__, color
|
| 107 |
|
|
|
|
| 109 |
if __name__ == "__main__":
|
| 110 |
|
| 111 |
with gr.Blocks() as demo:
|
| 112 |
+
gr.Markdown(_HEADER_)
|
| 113 |
+
with gr.Row(variant="panel"):
|
| 114 |
+
with gr.Column():
|
| 115 |
+
d1 = gr.Slider(0, nb_samples-1, value=0, label="Training sample id", info="Choose between 0 and "+str(nb_samples-1))
|
| 116 |
+
output1 = gr.Text(label="Training sample info")
|
| 117 |
+
with gr.Column():
|
| 118 |
+
d2 = gr.Dropdown(field_names_train, value=field_names_train[0], label="Field name")
|
| 119 |
+
output2 = gr.Image(label="Training sample visualization")
|
| 120 |
+
|
| 121 |
d1.input(sample_info, [d1, d2], [output1, output2])
|
| 122 |
d2.input(sample_info, [d1, d2], [output1, output2])
|
| 123 |
|
|
|
|
| 124 |
demo.launch()
|
| 125 |
|