Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| from transformers import pipeline | |
| import numpy as np | |
| import pandas as pd | |
| import re | |
| import torch | |
| number_re = re.compile(r"\.[0-9]*\.") | |
| STATE_DICT = {} | |
| DATA = pd.DataFrame() | |
| def scatter_plot_fn(group_name): | |
| global DATA | |
| df = DATA[DATA.group_name == group_name] | |
| return gr.LinePlot.update( | |
| value=df, | |
| x="rank", | |
| y="val", | |
| color="layer", | |
| tooltip=["val", "rank", "layer"], | |
| caption="", | |
| ) | |
| def find_choices(state_dict): | |
| global DATA | |
| layered_tensors = [ | |
| k for k, v in state_dict.items() if number_re.findall(k) and len(v.shape) == 2 | |
| ] | |
| choices = set() | |
| data = [] | |
| for name in layered_tensors: | |
| group_name = number_re.sub(".{N}.", name) | |
| choices.add(group_name) | |
| layer = int(number_re.search(name).group()[1:-1]) | |
| svdvals = torch.linalg.svdvals(state_dict[name]) | |
| svdvals /= svdvals.sum() | |
| for rank, val in enumerate(svdvals.tolist()[:20]): | |
| data.append((name, layer, group_name, rank, val)) | |
| data = np.array(data) | |
| DATA = pd.DataFrame(data, columns=["name", "layer", "group_name", "rank", "val"]) | |
| DATA["val"] = DATA["val"].astype("float") | |
| DATA["layer"] = DATA["layer"].astype("category") | |
| DATA["rank"] = DATA["rank"].astype("int32") | |
| return choices | |
| def weights_fn(model_id): | |
| global STATE_DICT | |
| try: | |
| pipe = pipeline(model=model_id) | |
| STATE_DICT = pipe.model.state_dict() | |
| except Exception as e: | |
| print(e) | |
| STATE_DICT = {} | |
| choices = find_choices(STATE_DICT) | |
| return gr.Dropdown.update(choices=choices) | |
| with gr.Blocks() as scatter_plot: | |
| with gr.Row(): | |
| with gr.Column(): | |
| model_id = gr.Textbox(value="gpt") | |
| weights = gr.Dropdown(choices=["qkv", "c_fc"]) | |
| with gr.Column(): | |
| plot = gr.LinePlot(show_label=False).style(container=True) | |
| model_id.change(weights_fn, inputs=model_id, outputs=weights) | |
| weights.change(fn=scatter_plot_fn, inputs=weights, outputs=plot) | |
| if __name__ == "__main__": | |
| scatter_plot.launch() | |