Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
from diffusers import FluxPipeline, FluxTransformer2DModel, FlowMatchEulerDiscreteScheduler
|
| 4 |
+
from huggingface_hub import hf_hub_download
|
| 5 |
+
from PIL import Image
|
| 6 |
+
import numpy as np
|
| 7 |
+
import random
|
| 8 |
+
import spaces
|
| 9 |
+
|
| 10 |
+
# Constants
|
| 11 |
+
BASE_MODEL = "black-forest-labs/FLUX.1-dev"
|
| 12 |
+
LORA_MODEL = "MegaTronX/SuicideGirl-FLUX" # Replace with your LoRA path
|
| 13 |
+
MAX_SEED = np.iinfo(np.int32).max
|
| 14 |
+
|
| 15 |
+
# Initialize model and scheduler
|
| 16 |
+
if torch.cuda.is_available():
|
| 17 |
+
transformer = FluxTransformer2DModel.from_single_file(
|
| 18 |
+
"https://huggingface.co/MegaTronX/SuicideGirl-FLUX/blob/main/SuicideGirls.safetensors",
|
| 19 |
+
torch_dtype=torch.bfloat16
|
| 20 |
+
)
|
| 21 |
+
pipe = FluxPipeline.from_pretrained(
|
| 22 |
+
BASE_MODEL,
|
| 23 |
+
transformer=transformer,
|
| 24 |
+
torch_dtype=torch.bfloat16
|
| 25 |
+
)
|
| 26 |
+
pipe.scheduler = FlowMatchEulerDiscreteScheduler.from_config(
|
| 27 |
+
pipe.scheduler.config, use_beta_sigmas=True
|
| 28 |
+
)
|
| 29 |
+
pipe.to("cuda")
|
| 30 |
+
|
| 31 |
+
# Load and apply LoRA weights
|
| 32 |
+
pipe.load_lora_weights(LORA_MODEL)
|
| 33 |
+
|
| 34 |
+
@spaces.GPU
|
| 35 |
+
def generate_image(
|
| 36 |
+
prompt,
|
| 37 |
+
width=768,
|
| 38 |
+
height=1024,
|
| 39 |
+
guidance_scale=3.5,
|
| 40 |
+
num_inference_steps=24,
|
| 41 |
+
seed=-1,
|
| 42 |
+
num_images=1,
|
| 43 |
+
progress=gr.Progress(track_tqdm=True)
|
| 44 |
+
):
|
| 45 |
+
if seed == -1:
|
| 46 |
+
seed = random.randint(0, MAX_SEED)
|
| 47 |
+
generator = torch.Generator().manual_seed(seed)
|
| 48 |
+
|
| 49 |
+
images = pipe(
|
| 50 |
+
prompt,
|
| 51 |
+
width=width,
|
| 52 |
+
height=height,
|
| 53 |
+
guidance_scale=guidance_scale,
|
| 54 |
+
num_inference_steps=num_inference_steps,
|
| 55 |
+
generator=generator,
|
| 56 |
+
output_type="pil",
|
| 57 |
+
max_sequence_length=512,
|
| 58 |
+
num_images_per_prompt=num_images,
|
| 59 |
+
).images
|
| 60 |
+
|
| 61 |
+
return images, seed
|
| 62 |
+
|
| 63 |
+
# Gradio Interface
|
| 64 |
+
with gr.Blocks() as demo:
|
| 65 |
+
gr.HTML("<h1><center>Flux LoRA Image Generator</center></h1>")
|
| 66 |
+
|
| 67 |
+
with gr.Group():
|
| 68 |
+
prompt = gr.Textbox(label='Enter Your Prompt', lines=3)
|
| 69 |
+
generate_button = gr.Button("Generate", variant='primary')
|
| 70 |
+
|
| 71 |
+
with gr.Row():
|
| 72 |
+
image_output = gr.Gallery(label="Generated Images", columns=2, preview=True)
|
| 73 |
+
seed_output = gr.Number(label="Seed Used")
|
| 74 |
+
|
| 75 |
+
with gr.Accordion("Advanced Options", open=False):
|
| 76 |
+
width = gr.Slider(label="Width", minimum=512, maximum=1280, step=8, value=768)
|
| 77 |
+
height = gr.Slider(label="Height", minimum=512, maximum=1280, step=8, value=1024)
|
| 78 |
+
guidance_scale = gr.Slider(label="Guidance Scale", minimum=0, maximum=50, step=0.1, value=3.5)
|
| 79 |
+
num_inference_steps = gr.Slider(label="Inference Steps", minimum=1, maximum=50, step=1, value=24)
|
| 80 |
+
seed = gr.Slider(label="Seed (-1 for random)", minimum=-1, maximum=MAX_SEED, step=1, value=-1)
|
| 81 |
+
num_images = gr.Slider(label="Number of Images", minimum=1, maximum=4, step=1, value=1)
|
| 82 |
+
|
| 83 |
+
generate_button.click(
|
| 84 |
+
fn=generate_image,
|
| 85 |
+
inputs=[prompt, width, height, guidance_scale, num_inference_steps, seed, num_images],
|
| 86 |
+
outputs=[image_output, seed_output]
|
| 87 |
+
)
|
| 88 |
+
|
| 89 |
+
demo.launch()
|