Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,6 +1,7 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 3 |
import torch
|
|
|
|
|
|
|
| 4 |
import spaces
|
| 5 |
|
| 6 |
# Load the fine-tuned model
|
|
@@ -10,22 +11,37 @@ def load_model():
|
|
| 10 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
| 11 |
return model, tokenizer
|
| 12 |
|
| 13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
-
# Function to generate an image
|
| 16 |
@spaces.GPU
|
| 17 |
-
def generate_image(prompt):
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
|
| 22 |
-
# Gradio interface
|
| 23 |
iface = gr.Interface(
|
| 24 |
fn=generate_image,
|
| 25 |
-
inputs=
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
)
|
| 30 |
|
| 31 |
iface.launch()
|
|
|
|
| 1 |
import gradio as gr
|
|
|
|
| 2 |
import torch
|
| 3 |
+
from diffusers import FluxDiffusionPipeline
|
| 4 |
+
from huggingface_hub import hf_hub_download
|
| 5 |
import spaces
|
| 6 |
|
| 7 |
# Load the fine-tuned model
|
|
|
|
| 11 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
| 12 |
return model, tokenizer
|
| 13 |
|
| 14 |
+
# Load the base Flux Dev model
|
| 15 |
+
model_id = "black-forest-labs/FLUX.1-dev"
|
| 16 |
+
pipeline = FluxDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
|
| 17 |
+
pipeline = pipeline.to("cuda")
|
| 18 |
+
|
| 19 |
+
# Download and load the LoRA weights
|
| 20 |
+
lora_model_path = hf_hub_download("MegaTronX/SuicideGirl-FLUX", "SuicideGirls.safetensors")
|
| 21 |
+
pipeline.load_lora_weights(lora_model_path)
|
| 22 |
|
|
|
|
| 23 |
@spaces.GPU
|
| 24 |
+
def generate_image(prompt, negative_prompt, guidance_scale, num_inference_steps):
|
| 25 |
+
image = pipeline(
|
| 26 |
+
prompt=prompt,
|
| 27 |
+
negative_prompt=negative_prompt,
|
| 28 |
+
guidance_scale=guidance_scale,
|
| 29 |
+
num_inference_steps=num_inference_steps
|
| 30 |
+
).images[0]
|
| 31 |
+
return image
|
| 32 |
|
| 33 |
+
# Create the Gradio interface
|
| 34 |
iface = gr.Interface(
|
| 35 |
fn=generate_image,
|
| 36 |
+
inputs=[
|
| 37 |
+
gr.Textbox(label="Prompt"),
|
| 38 |
+
gr.Textbox(label="Negative Prompt"),
|
| 39 |
+
gr.Slider(minimum=1, maximum=20, value=7.5, label="Guidance Scale"),
|
| 40 |
+
gr.Slider(minimum=1, maximum=100, value=50, step=1, label="Number of Inference Steps")
|
| 41 |
+
],
|
| 42 |
+
outputs=gr.Image(type="pil"),
|
| 43 |
+
title="Image Generation with Flux Dev LoRA",
|
| 44 |
+
description="Generate images using a Flux Dev model with a custom LoRA fine-tune."
|
| 45 |
)
|
| 46 |
|
| 47 |
iface.launch()
|