Spaces:
Sleeping
Sleeping
| from fastapi import FastAPI, HTTPException | |
| from pydantic import BaseModel | |
| from transformers import AutoModelForCausalLM, AutoTokenizer | |
| import torch | |
| from langchain_core.messages import HumanMessage, AIMessage | |
| from langgraph.checkpoint.memory import MemorySaver | |
| from langgraph.graph import START, MessagesState, StateGraph | |
| import os | |
| from dotenv import load_dotenv | |
| load_dotenv() | |
| # Initialize the model and tokenizer | |
| print("Cargando modelo y tokenizer...") | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| model_name = "HuggingFaceTB/SmolLM2-1.7B-Instruct" | |
| try: | |
| # Load the model in BF16 format for better performance and lower memory usage | |
| tokenizer = AutoTokenizer.from_pretrained(model_name) | |
| if device == "cuda": | |
| print("Using GPU for the model...") | |
| model = AutoModelForCausalLM.from_pretrained( | |
| model_name, | |
| torch_dtype=torch.bfloat16, | |
| device_map="auto", | |
| low_cpu_mem_usage=True | |
| ) | |
| else: | |
| print("Using CPU for the model...") | |
| model = AutoModelForCausalLM.from_pretrained( | |
| model_name, | |
| device_map={"": device}, | |
| torch_dtype=torch.float32 | |
| ) | |
| print(f"Model loaded successfully on: {device}") | |
| except Exception as e: | |
| print(f"Error loading the model: {str(e)}") | |
| raise | |
| # Define the function that calls the model | |
| def call_model(state: MessagesState): | |
| """ | |
| Call the model with the given messages | |
| Args: | |
| state: MessagesState | |
| Returns: | |
| dict: A dictionary containing the generated text and the thread ID | |
| """ | |
| # Convert LangChain messages to chat format | |
| messages = [ | |
| {"role": "system", "content": "You are a friendly Chatbot. Always reply in the language in which the user is writing to you."} | |
| ] | |
| for msg in state["messages"]: | |
| if isinstance(msg, HumanMessage): | |
| messages.append({"role": "user", "content": msg.content}) | |
| elif isinstance(msg, AIMessage): | |
| messages.append({"role": "assistant", "content": msg.content}) | |
| # Prepare the input using the chat template | |
| input_text = tokenizer.apply_chat_template(messages, tokenize=False) | |
| inputs = tokenizer.encode(input_text, return_tensors="pt").to(device) | |
| # Generate response | |
| outputs = model.generate( | |
| inputs, | |
| max_new_tokens=512, # Increase the number of tokens for longer responses | |
| temperature=0.7, | |
| top_p=0.9, | |
| do_sample=True, | |
| pad_token_id=tokenizer.eos_token_id | |
| ) | |
| # Decode and clean the response | |
| response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
| # Extract only the assistant's response (after the last user message) | |
| response = response.split("Assistant:")[-1].strip() | |
| # Convert the response to LangChain format | |
| ai_message = AIMessage(content=response) | |
| return {"messages": state["messages"] + [ai_message]} | |
| # Define the graph | |
| workflow = StateGraph(state_schema=MessagesState) | |
| # Define the node in the graph | |
| workflow.add_edge(START, "model") | |
| workflow.add_node("model", call_model) | |
| # Add memory | |
| memory = MemorySaver() | |
| graph_app = workflow.compile(checkpointer=memory) | |
| # Define the data model for the request | |
| class QueryRequest(BaseModel): | |
| query: str | |
| thread_id: str = "default" | |
| # Create the FastAPI application | |
| app = FastAPI(title="LangChain FastAPI", description="API to generate text using LangChain and LangGraph") | |
| # Welcome endpoint | |
| async def api_home(): | |
| """Welcome endpoint""" | |
| return {"detail": "Welcome to FastAPI, Langchain, Docker tutorial"} | |
| # Generate endpoint | |
| async def generate(request: QueryRequest): | |
| """ | |
| Endpoint to generate text using the language model | |
| Args: | |
| request: QueryRequest | |
| query: str | |
| thread_id: str = "default" | |
| Returns: | |
| dict: A dictionary containing the generated text and the thread ID | |
| """ | |
| try: | |
| # Configure the thread ID | |
| config = {"configurable": {"thread_id": request.thread_id}} | |
| # Create the input message | |
| input_messages = [HumanMessage(content=request.query)] | |
| # Invoke the graph | |
| output = graph_app.invoke({"messages": input_messages}, config) | |
| # Get the model response | |
| response = output["messages"][-1].content | |
| return { | |
| "generated_text": response, | |
| "thread_id": request.thread_id | |
| } | |
| except Exception as e: | |
| raise HTTPException(status_code=500, detail=f"Error al generar texto: {str(e)}") | |
| if __name__ == "__main__": | |
| import uvicorn | |
| uvicorn.run(app, host="0.0.0.0", port=7860) |