#!/usr/bin/env python3 """ NeuroAnim Gradio Web Interface A comprehensive web UI for generating educational STEM animations with: - Topic input and configuration - Real-time progress tracking - Video preview and download - Generated content display (narration, code, quiz) - Error handling and logging """ import asyncio import logging import os from datetime import datetime from pathlib import Path from typing import Any, Dict, Optional, Tuple import gradio as gr from dotenv import load_dotenv from orchestrator import NeuroAnimOrchestrator load_dotenv() # Set up logging logging.basicConfig( level=logging.INFO, format="%(asctime)s - %(name)s - %(levelname)s - %(message)s" ) logger = logging.getLogger(__name__) def format_quiz_markdown(quiz_text: str) -> str: """Format quiz text into a nice markdown display.""" if not quiz_text or quiz_text == "Not available": return "ā“ No quiz generated yet." # If it's already formatted or looks good, return as is with some styling formatted = f"## šŸ“ Assessment Questions\n\n{quiz_text}" # Try to add some structure if it's plain text lines = quiz_text.split("\n") formatted_lines = [] question_num = 0 for line in lines: line = line.strip() if not line: formatted_lines.append("") continue # Detect question patterns if line.lower().startswith(("q:", "question", "q.", f"{question_num + 1}.")): question_num += 1 formatted_lines.append(f"\n### Question {question_num}") # Remove the question prefix clean_line = line.split(":", 1)[-1].strip() if ":" in line else line formatted_lines.append(f"**{clean_line}**\n") elif line.lower().startswith(("a)", "b)", "c)", "d)", "a.", "b.", "c.", "d.")): # Format multiple choice options formatted_lines.append(f"- {line}") elif line.lower().startswith(("answer:", "a:", "correct:")): # Format answers formatted_lines.append(f"\n> āœ… {line}\n") else: formatted_lines.append(line) # If we detected structure, use the formatted version if question_num > 0: return "## šŸ“ Assessment Questions\n\n" + "\n".join(formatted_lines) # Otherwise return with basic formatting return formatted class NeuroAnimApp: """Main application class for Gradio interface.""" def __init__(self): self.orchestrator: Optional[NeuroAnimOrchestrator] = None self.current_task: Optional[asyncio.Task] = None self.is_generating = False self.event_loop: Optional[asyncio.AbstractEventLoop] = None self.current_progress = None # Store progress callback for dynamic updates async def initialize_orchestrator(self): """Initialize the orchestrator if not already done.""" if self.orchestrator is None: self.orchestrator = NeuroAnimOrchestrator() await self.orchestrator.initialize() logger.info("Orchestrator initialized successfully") async def cleanup_orchestrator(self): """Clean up orchestrator resources.""" if self.orchestrator is not None: await self.orchestrator.cleanup() self.orchestrator = None logger.info("Orchestrator cleaned up") def cleanup_event_loop(self): """Clean up the event loop on application shutdown.""" if self.event_loop is not None and not self.event_loop.is_closed(): self.event_loop.close() self.event_loop = None logger.info("Event loop closed") async def generate_animation_async( self, topic: str, audience: str, duration: float, quality: str, progress=gr.Progress() ) -> Dict[str, Any]: """ Generate animation with progress tracking. Args: topic: STEM topic to animate audience: Target audience level duration: Animation duration in minutes quality: Video quality (low, medium, high, production_quality) progress: Gradio progress tracker Returns: Results dictionary with generated content """ try: self.is_generating = True # Validate inputs if not topic or len(topic.strip()) < 3: return { "success": False, "error": "Please provide a valid topic (at least 3 characters)", } if duration < 0.5 or duration > 10: return { "success": False, "error": "Duration must be between 0.5 and 10 minutes", } # Initialize orchestrator progress(0.05, desc="Initializing system...") await self.initialize_orchestrator() # Generate unique filename timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") safe_topic = "".join(c if c.isalnum() else "_" for c in topic)[:30] output_filename = f"{safe_topic}_{timestamp}.mp4" # Map quality from UI to orchestrator format quality_map = { "Low (480p, faster)": "low", "Medium (720p, balanced)": "medium", "High (1080p, slower)": "high", "Production (4K, slowest)": "production_quality", } quality_param = quality_map.get(quality, "medium") # Map audience from UI to orchestrator format audience_map = { "elementary": "elementary", "middle_school": "middle_school", "high_school": "high_school", "undergraduate": "college", # Map to 'college' for LLM compatibility "phd": "graduate", # Map to 'graduate' for LLM compatibility "general": "general", } audience_param = audience_map.get(audience, audience) # Dynamic progress tracking with step-based updates step_times = {} # Track step start times step_index = [0] # Current step index steps = [ (0.1, "Planning concept"), (0.25, "Generating narration script"), (0.40, "Creating Manim animation code"), (0.55, "Rendering animation video"), (0.75, "Generating audio narration"), (0.90, "Merging video and audio"), (0.95, "Creating quiz questions"), ] import time def progress_callback(step_name: str, step_progress: float): """Callback for orchestrator to report progress.""" # Find matching step for idx, (prog, desc) in enumerate(steps): if desc.lower() in step_name.lower(): step_index[0] = idx # Track timing current_time = time.time() if step_name not in step_times: step_times[step_name] = current_time elapsed = current_time - step_times[step_name] # Add timing info for long steps if elapsed > 30: # Show message if step takes more than 30s desc_with_time = f"{desc} (taking longer than usual, please wait...)" else: desc_with_time = f"{desc}..." progress(prog, desc=desc_with_time) return # If no match, use the provided progress directly progress(step_progress, desc=f"{step_name}...") # Start generation with dynamic progress result = await self.orchestrator.generate_animation( topic=topic, target_audience=audience_param, animation_length_minutes=duration, output_filename=output_filename, quality=quality_param, progress_callback=progress_callback, ) progress(1.0, desc="Complete!") logger.info("Async generation completed, returning result") return result except Exception as e: logger.error(f"Generation failed: {e}", exc_info=True) return {"success": False, "error": str(e)} finally: self.is_generating = False def generate_animation_sync( self, topic: str, audience: str, duration: float, quality: str, progress=gr.Progress() ) -> Tuple[str, str, str, str, str, str]: """ Synchronous wrapper for Gradio interface. Returns: Tuple of (video_path, status, narration, code, quiz, concept_plan) """ try: # Reuse existing event loop or create a persistent one if self.event_loop is None or self.event_loop.is_closed(): self.event_loop = asyncio.new_event_loop() asyncio.set_event_loop(self.event_loop) logger.info("Created new persistent event loop") else: asyncio.set_event_loop(self.event_loop) logger.info("Reusing existing event loop") logger.info("Starting event loop execution...") result = self.event_loop.run_until_complete( self.generate_animation_async(topic, audience, duration, quality, progress) ) logger.info("Event loop execution completed") # DO NOT close the loop - keep it for subsequent generations if result["success"]: logger.info("Processing successful result...") video_path = result["output_file"] status = f"āœ… **Animation Generated Successfully!**\n\n**Topic:** {result['topic']}\n**Audience:** {result['target_audience']}\n**Output:** {os.path.basename(video_path)}" narration = result.get("narration", "Not available") code = result.get("manim_code", "Not available") quiz_raw = result.get("quiz", "Not available") quiz = format_quiz_markdown(quiz_raw) concept = result.get("concept_plan", "Not available") logger.info(f"Returning result to Gradio: {video_path}") return video_path, video_path, status, narration, code, quiz, concept else: error_msg = result.get("error", "Unknown error") status = f"āŒ **Generation Failed**\n\n{error_msg}" return None, None, status, "", "", "", "" except Exception as e: logger.error(f"Sync wrapper error: {e}", exc_info=True) status = f"šŸ’„ **Unexpected Error**\n\n{str(e)}" return None, None, status, "", "", "", "" def create_interface() -> gr.Blocks: """Create the Gradio interface.""" app = NeuroAnimApp() # Custom CSS for better styling custom_css = """ .main-title { text-align: center; color: #2563eb; font-size: 2.5em; font-weight: bold; margin-bottom: 0.5em; } .subtitle { text-align: center; color: #64748b; font-size: 1.2em; margin-bottom: 2em; } .status-box { padding: 1em; border-radius: 8px; margin: 1em 0; } .gradio-container { max-width: 1400px !important; } /* Video player styling */ video { border-radius: 8px; box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1); } /* Quiz and content styling */ .markdown-text h2 { color: #1e40af; border-bottom: 2px solid #3b82f6; padding-bottom: 0.5em; margin-top: 1em; } .markdown-text h3 { color: #1e293b; margin-top: 1em; } .markdown-text blockquote { background-color: #f0fdf4; border-left: 4px solid #22c55e; padding: 0.5em 1em; margin: 1em 0; } /* Button styling */ .primary { background: linear-gradient(135deg, #2563eb 0%, #1d4ed8 100%); } /* Code block styling */ .code-container { border-radius: 8px; margin: 1em 0; } """ with gr.Blocks(title="NeuroAnim - STEM Animation Generator") as interface: # Apply custom CSS interface.css = custom_css # Header gr.HTML("""
🧠 NeuroAnim
AI-Powered Educational Animation Generator
""") with gr.Tabs() as tabs: # Main Generation Tab with gr.TabItem("šŸŽ¬ Generate Animation", id=0): gr.Markdown(""" ### Create Your Educational Animation Enter a mathematical or scientific concept, and NeuroAnim will generate a complete animated video with narration and quiz questions. """) with gr.Row(): with gr.Column(scale=1): # Input Section gr.Markdown("#### šŸ“ Animation Configuration") topic_input = gr.Textbox( label="Topic / Concept", placeholder="e.g., Pythagorean Theorem, Photosynthesis, Newton's Laws, etc.", lines=2, info="Enter the STEM concept you want to explain", ) with gr.Row(): audience_input = gr.Dropdown( label="Target Audience", choices=[ "elementary", "middle_school", "high_school", "undergraduate", "phd", "general", ], value="high_school", info="Select the appropriate education level", ) duration_input = gr.Slider( label="Duration (minutes)", minimum=0.5, maximum=10, value=2.0, step=0.5, info="Animation length", ) quality_input = gr.Dropdown( label="Video Quality", choices=[ "Low (480p, faster)", "Medium (720p, balanced)", "High (1080p, slower)", "Production (4K, slowest)", ], value="Medium (720p, balanced)", info="Higher quality takes longer to render", ) generate_btn = gr.Button( "šŸš€ Generate Animation", variant="primary", size="lg" ) status_output = gr.Markdown( label="Status", value="Ready to generate...", elem_classes=["status-box"], ) # Example inputs gr.Markdown("#### šŸ’” Example Topics") gr.Examples( examples=[ ["Pythagorean Theorem", "high_school", 2.0, "Medium (720p, balanced)"], ["Laws of Motion", "middle_school", 2.5, "Low (480p, faster)"], ["Binary Numbers", "middle_school", 1.5, "Medium (720p, balanced)"], ["Photosynthesis Process", "elementary", 2.0, "Low (480p, faster)"], ["Quadratic Formula", "high_school", 3.0, "Medium (720p, balanced)"], ["Circle Area Derivation", "undergraduate", 2.5, "High (1080p, slower)"], ], inputs=[topic_input, audience_input, duration_input, quality_input], ) with gr.Column(scale=1): # Output Section gr.Markdown("#### šŸŽ„ Generated Animation") video_output = gr.Video( label="Animation Video", height=400, interactive=False ) # Download button download_file = gr.File( label="šŸ“„ Download Animation", interactive=False, visible=True, ) gr.Markdown( "**Tip:** Click the download button above or use the ā‹® menu on the video player" ) # Additional outputs in accordion with gr.Accordion("šŸ“„ View Generated Content", open=True): with gr.Tabs(): with gr.TabItem("šŸ“– Narration Script"): narration_output = gr.Textbox( label="Narration Text", lines=8, interactive=False, ) with gr.TabItem("šŸ’» Manim Code"): code_output = gr.Code( label="Generated Python Code", language="python", interactive=False, lines=15, ) with gr.TabItem("ā“ Quiz Questions"): quiz_output = gr.Markdown( label="Assessment Questions", value="Quiz will appear here after generation...", ) with gr.TabItem("šŸ“‹ Concept Plan"): concept_output = gr.Textbox( label="Educational Plan", lines=10, interactive=False, ) # Connect the generate button generate_btn.click( fn=app.generate_animation_sync, inputs=[topic_input, audience_input, duration_input, quality_input], outputs=[ video_output, download_file, status_output, narration_output, code_output, quiz_output, concept_output, ], api_name="generate", ) # About Tab with gr.TabItem("ā„¹ļø About", id=1): gr.Markdown(""" # About NeuroAnim NeuroAnim is an AI-powered educational animation generator that creates engaging STEM content automatically. ## šŸŽÆ Features - **šŸŽØ Automatic Animation Generation**: Creates professional Manim animations from topic descriptions - **šŸ—£ļø AI Narration**: Generates educational narration scripts tailored to your audience - **šŸ”Š Text-to-Speech**: Converts narration to high-quality audio with ElevenLabs or Hugging Face - **šŸ“¹ Video Production**: Renders and merges video with synchronized audio - **ā“ Quiz Generation**: Creates assessment questions to test understanding - **šŸŽ“ Multi-Level Support**: Content appropriate for elementary through undergraduate levels ## šŸ”§ Technology Stack - **Manim Community Edition**: Mathematical animation engine - **Hugging Face Models**: AI-powered content generation - **ElevenLabs**: High-quality text-to-speech synthesis - **MCP (Model Context Protocol)**: Modular server architecture - **Gradio**: Interactive web interface ## šŸš€ How It Works 1. **Concept Planning**: AI analyzes your topic and creates an educational plan 2. **Script Writing**: Generates age-appropriate narration aligned with learning objectives 3. **Code Generation**: Creates Manim Python code for visual representation 4. **Rendering**: Executes Manim to produce the base animation 5. **Audio Synthesis**: Converts narration to speech using TTS 6. **Final Production**: Merges video and audio into complete animation 7. **Assessment**: Generates quiz questions for the content ## šŸ“ Tips for Best Results - **Be Specific**: Instead of "math", try "solving linear equations" or "area of a circle" - **Choose Right Audience**: Match the complexity level to your target viewers - **Optimal Duration**: 1.5-3 minutes works best for most concepts - **Review Generated Content**: Check the narration and code tabs to see what was created - **Iterate**: If results aren't perfect, try rewording your topic or adjusting parameters ## šŸ”‘ Setup Requirements To use NeuroAnim, you need: - **Hugging Face API Key**: For AI content generation (required) - **ElevenLabs API Key**: For high-quality TTS (optional, falls back to HF TTS) Set these in your `.env` file: ```bash HUGGINGFACE_API_KEY=your_key_here ELEVENLABS_API_KEY=your_key_here # Optional ``` ## šŸ“š Example Use Cases - **Teachers**: Create engaging lesson materials - **Students**: Visualize complex concepts for better understanding - **Content Creators**: Produce educational YouTube/social media content - **Tutors**: Generate custom explanations for specific topics - **Course Developers**: Build comprehensive educational video libraries ## šŸ¤ Contributing NeuroAnim is open source! Contributions are welcome: - Report bugs or suggest features via GitHub Issues - Submit pull requests with improvements - Share your generated animations with the community ## šŸ“„ License MIT License - Free to use for educational and commercial purposes --- Made with ā¤ļø for educational content creation """) # Settings Tab with gr.TabItem("āš™ļø Settings", id=2): gr.Markdown(""" # System Configuration Configure API keys and system settings here. """) with gr.Group(): gr.Markdown("### šŸ”‘ API Keys") hf_key_status = gr.Textbox( label="Hugging Face API Key Status", value="āœ… Configured" if os.getenv("HUGGINGFACE_API_KEY") else "āŒ Not Set", interactive=False, ) eleven_key_status = gr.Textbox( label="ElevenLabs API Key Status", value="āœ… Configured" if os.getenv("ELEVENLABS_API_KEY") else "āš ļø Not Set (will use fallback TTS)", interactive=False, ) gr.Markdown(""" **To configure API keys:** 1. Create a `.env` file in the project root 2. Add your keys: ``` HUGGINGFACE_API_KEY=your_hf_key ELEVENLABS_API_KEY=your_elevenlabs_key ``` 3. Restart the application """) with gr.Group(): gr.Markdown("### šŸ“Š System Info") system_info = gr.Textbox( label="System Status", value=f""" Output Directory: {Path("outputs").absolute()} Working Directory: Temporary (auto-created) Manim Version: Community Edition Default Quality: Medium (720p, 30fps) """.strip(), interactive=False, lines=6, ) return interface def main(): """Launch the Gradio application.""" # Check for API keys if not os.getenv("HUGGINGFACE_API_KEY"): logger.warning("HUGGINGFACE_API_KEY not set! Generation will fail.") print("\nāš ļø WARNING: HUGGINGFACE_API_KEY environment variable not set!") print("Please set it in your .env file or environment.\n") if not os.getenv("ELEVENLABS_API_KEY"): logger.info("ELEVENLABS_API_KEY not set, will use fallback TTS") print( "\nā„¹ļø Note: ELEVENLABS_API_KEY not set. Using fallback TTS (may have lower quality).\n" ) # Create outputs directory Path("outputs").mkdir(exist_ok=True) # Build and launch interface interface = create_interface() logger.info("Launching Gradio interface...") interface.launch( server_name="0.0.0.0", server_port=7860, share=False, ) if __name__ == "__main__": main()