aamanlamba Claude commited on
Commit
418445b
Β·
1 Parent(s): 0fb81b1

Add demo video links to README and BUILD_PLAN

Browse files

- YouTube: https://youtu.be/U4Dfc7txa_0
- Loom: https://www.loom.com/share/3de27e88e01f4e97bfd13e4f0031f416
- Updated BUILD_PLAN.md to mark demo video as complete
- Added video highlights section
- Only social media post remains for submission

πŸ€– Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <[email protected]>

Files changed (4) hide show
  1. BUILD_PLAN.md +20 -14
  2. DEMO_VIDEO_SCRIPT.md +226 -0
  3. README.md +10 -1
  4. YOUTUBE_DESCRIPTION.md +183 -0
BUILD_PLAN.md CHANGED
@@ -32,7 +32,7 @@ All major features have been implemented and tested. The application is live on
32
  - [x] HuggingFace Space deployed
33
  - [ ] Social media post (LinkedIn/X) published
34
  - [x] README with complete documentation
35
- - [ ] Demo video (1-5 minutes)
36
  - [x] All team member HF usernames in Space README
37
 
38
  ---
@@ -159,18 +159,23 @@ exporters/
159
  ---
160
 
161
  ### 2.7 Demo Video Production
 
162
  **Priority:** Critical (Submission Requirement)
163
- **Status:** ⏳ PENDING
164
-
165
- #### Video Content Plan (1-5 minutes):
166
- 1. Introduction (15s) - What is Lineage Graph Accelerator
167
- 2. Problem statement (20s) - Why data lineage matters
168
- 3. Live demo - AI Assistant (30s) - Ask Gemini to generate lineage
169
- 4. Live demo - Sample data (30s) - Use Demo Gallery
170
- 5. Export features (30s) - Export to Collibra/Purview/Atlas
171
- 6. MCP integration (30s) - Show MCP checkbox feature
172
- 7. Real-world use cases (30s) - Enterprise scenarios
173
- 8. Call to action (15s) - Try it on HuggingFace
 
 
 
 
174
 
175
  ---
176
 
@@ -225,9 +230,10 @@ python -m unittest tests.test_app -v
225
  - [x] MCP integration working
226
 
227
  ### Documentation: βœ… COMPLETE
 
228
  - [x] README.md complete
229
  - [x] USER_GUIDE.md complete
230
- - [ ] Demo video - TO DO
231
  - [ ] Social media post - TO DO
232
 
233
  ---
@@ -236,7 +242,7 @@ python -m unittest tests.test_app -v
236
 
237
  | Task | Priority | Status |
238
  |------|----------|--------|
239
- | Record demo video (1-5 min) | **CRITICAL** | ⏳ Pending |
240
  | Publish social media post | **CRITICAL** | ⏳ Pending |
241
 
242
  ---
 
32
  - [x] HuggingFace Space deployed
33
  - [ ] Social media post (LinkedIn/X) published
34
  - [x] README with complete documentation
35
+ - [x] Demo video (1-5 minutes) - [YouTube](https://youtu.be/U4Dfc7txa_0) | [Loom](https://www.loom.com/share/3de27e88e01f4e97bfd13e4f0031f416)
36
  - [x] All team member HF usernames in Space README
37
 
38
  ---
 
159
  ---
160
 
161
  ### 2.7 Demo Video Production
162
+
163
  **Priority:** Critical (Submission Requirement)
164
+ **Status:** βœ… COMPLETE
165
+
166
+ #### Video Links
167
+
168
+ - **YouTube**: [Watch the Demo](https://youtu.be/U4Dfc7txa_0)
169
+ - **Loom**: [Alternative Link](https://www.loom.com/share/3de27e88e01f4e97bfd13e4f0031f416)
170
+
171
+ #### Video Highlights (2:30 minutes)
172
+
173
+ 1. Introduction (15s) - Lineage Graph Accelerator overview
174
+ 2. AI Assistant (30s) - Google Gemini generating lineage from natural language
175
+ 3. MCP Integration (25s) - Local Demo MCP server fetching metadata
176
+ 4. Demo Gallery (25s) - Complex 50+ node pipeline + export to Collibra
177
+ 5. Interactive Features (20s) - Zoom, PNG/SVG download
178
+ 6. Call to Action (15s) - Try on HuggingFace, visit aamanlamba.com
179
 
180
  ---
181
 
 
230
  - [x] MCP integration working
231
 
232
  ### Documentation: βœ… COMPLETE
233
+
234
  - [x] README.md complete
235
  - [x] USER_GUIDE.md complete
236
+ - [x] Demo video - [YouTube](https://youtu.be/U4Dfc7txa_0) | [Loom](https://www.loom.com/share/3de27e88e01f4e97bfd13e4f0031f416)
237
  - [ ] Social media post - TO DO
238
 
239
  ---
 
242
 
243
  | Task | Priority | Status |
244
  |------|----------|--------|
245
+ | ~~Record demo video (1-5 min)~~ | CRITICAL | βœ… Complete |
246
  | Publish social media post | **CRITICAL** | ⏳ Pending |
247
 
248
  ---
DEMO_VIDEO_SCRIPT.md ADDED
@@ -0,0 +1,226 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Demo Video Script - Lineage Graph Accelerator
2
+ ## Target: 2-3 minutes | Competition: Gradio Agents & MCP Hackathon Winter 2025
3
+
4
+ ---
5
+
6
+ ## 🎬 SETUP BEFORE RECORDING
7
+
8
+ ### Pre-recording Checklist:
9
+ - [ ] Open HuggingFace Space: https://huggingface.co/spaces/aamanlamba/Lineage-graph-accelerator
10
+ - [ ] Have your Google Gemini API key ready (for AI Assistant demo)
11
+ - [ ] Clear browser cache for clean demo
12
+ - [ ] Close unnecessary tabs/windows
13
+ - [ ] Set screen resolution to 1920x1080 (or 1280x720)
14
+ - [ ] Turn on "Do Not Disturb" mode
15
+ - [ ] Test audio levels
16
+
17
+ ### Recording Tools (Choose One):
18
+ 1. **macOS**: QuickTime Player (File β†’ New Screen Recording)
19
+ 2. **Free**: OBS Studio (https://obsproject.com)
20
+ 3. **Browser**: Loom (https://loom.com) - easiest, records directly
21
+
22
+ ---
23
+
24
+ ## πŸ“ SCRIPT
25
+
26
+ ### [0:00-0:15] Introduction (15 seconds)
27
+ **[Show the HuggingFace Space with the purple gradient banner visible]**
28
+
29
+ > "Hi, I'm Aaman Lamba, and this is the Lineage Graph Accelerator - an AI-powered tool that automatically extracts and visualizes data lineage from your data pipelines, built with Gradio 6 and MCP integration."
30
+
31
+ **ACTION**: Scroll slowly down the page to show the "What You Can Do" section
32
+
33
+ ---
34
+
35
+ ### [0:15-0:35] Problem Statement (20 seconds)
36
+ **[Pause on the features table]**
37
+
38
+ > "Data engineers and analysts struggle to understand how data flows through their systems. Manual lineage documentation is tedious and quickly becomes outdated. This tool solves that by automatically parsing your dbt manifests, Airflow DAGs, SQL files, and even natural language descriptions."
39
+
40
+ ---
41
+
42
+ ### [0:35-1:05] Feature #1: AI Assistant with Gemini (30 seconds)
43
+ **[Click on "AI Assistant" tab]**
44
+
45
+ > "Let me show you the AI-powered assistant. I'll paste my Gemini API key and ask it to generate lineage for an e-commerce pipeline."
46
+
47
+ **ACTION**:
48
+ 1. Paste API key into the field
49
+ 2. Type in chatbot: "Create a lineage graph for an e-commerce platform with orders, customers, and products tables feeding into a sales mart"
50
+ 3. Click Send
51
+ 4. Wait for response (should generate JSON)
52
+ 5. Click "Use Generated JSON" button
53
+
54
+ **SAY WHILE WAITING**:
55
+ > "The assistant uses Google Gemini to understand natural language and generate valid lineage JSON automatically."
56
+
57
+ **AFTER CLICKING "Use Generated JSON"**:
58
+ 6. Click "Extract Lineage" button
59
+ 7. Show the generated Mermaid graph
60
+
61
+ > "And there's our interactive lineage graph with color-coded nodes. You can click to zoom in."
62
+
63
+ ---
64
+
65
+ ### [1:05-1:30] Feature #2: MCP Integration (25 seconds)
66
+ **[Click back to "Extract Lineage" tab]**
67
+
68
+ > "Now let's try the MCP integration - this connects to Model Context Protocol servers for metadata."
69
+
70
+ **ACTION**:
71
+ 1. Check the "Use MCP Server for Metadata" checkbox
72
+ 2. Select "Local Demo MCP (Built-in)" from the dropdown
73
+ 3. In MCP Query field, type: "ecommerce"
74
+ 4. Click "Extract Lineage"
75
+ 5. Show the resulting graph
76
+
77
+ **SAY**:
78
+ > "The MCP server provides pre-configured metadata. This works with any MCP-compatible server on HuggingFace."
79
+
80
+ ---
81
+
82
+ ### [1:30-1:55] Feature #3: Demo Gallery & Export (25 seconds)
83
+ **[Click on "Demo Gallery" tab]**
84
+
85
+ > "Need inspiration? The Demo Gallery has real-world examples."
86
+
87
+ **ACTION**:
88
+ 1. Click "Load Sample" button for "Complex E-commerce Platform (50+ nodes)"
89
+ 2. Show it loading in the text area
90
+ 3. Go back to "Extract Lineage" tab
91
+ 4. Click "Extract Lineage"
92
+ 5. Briefly show the large complex graph
93
+
94
+ **[Scroll down to Export section]**
95
+
96
+ > "And you can export to any major data catalog - Collibra, Microsoft Purview, Alation, Apache Atlas, or OpenLineage standard."
97
+
98
+ **ACTION**:
99
+ 1. Select "Collibra" from dropdown
100
+ 2. Click "Generate Export"
101
+ 3. Show the JSON output briefly
102
+ 4. Click "Copy to Clipboard"
103
+
104
+ ---
105
+
106
+ ### [1:55-2:15] Feature #4: Additional Capabilities (20 seconds)
107
+ **[Scroll to show the graph visualization features]**
108
+
109
+ > "The graphs are fully interactive - click to zoom, download as PNG or SVG, or edit in Mermaid Live."
110
+
111
+ **ACTION**:
112
+ 1. Click on the graph to zoom
113
+ 2. Point to the "Download PNG" and "Download SVG" buttons
114
+ 3. Point to "Edit in Mermaid Live" link
115
+
116
+ **SAY**:
117
+ > "All of this supports multiple input formats: dbt, Airflow, SQL DDL, BigQuery, and custom JSON."
118
+
119
+ ---
120
+
121
+ ### [2:15-2:30] Call to Action (15 seconds)
122
+ **[Scroll back up to show the banner with your website link]**
123
+
124
+ > "This project demonstrates the power of combining Gradio 6, MCP, and AI agents for productivity. Try it yourself on HuggingFace Spaces, check out the full documentation, and visit aamanlamba.com for more projects. Thanks for watching!"
125
+
126
+ **ACTION**:
127
+ 1. Hover over "By Aaman Lamba" button to show it's clickable
128
+ 2. Show the HuggingFace Space URL in the browser bar
129
+ 3. End recording
130
+
131
+ ---
132
+
133
+ ## 🎯 KEY MESSAGES TO EMPHASIZE
134
+
135
+ 1. **AI-Powered**: Google Gemini integration for natural language lineage generation
136
+ 2. **MCP Integration**: Connects to Model Context Protocol servers (competition requirement)
137
+ 3. **Multiple Formats**: dbt, Airflow, SQL, BigQuery, JSON
138
+ 4. **Enterprise Ready**: Exports to 5 major data catalogs
139
+ 5. **Gradio 6**: Modern, professional UI (competition requirement)
140
+ 6. **Real-World Impact**: Solves actual data governance problems
141
+
142
+ ---
143
+
144
+ ## βœ… POST-RECORDING
145
+
146
+ 1. **Review the video**:
147
+ - Check audio quality
148
+ - Ensure all features are clearly visible
149
+ - Verify timing is under 5 minutes (ideally 2-3 min)
150
+
151
+ 2. **Edit if needed**:
152
+ - Trim any long pauses
153
+ - Add title card (optional): "Lineage Graph Accelerator | Gradio + MCP Hackathon 2025"
154
+ - Add your website URL as overlay at the end (optional)
155
+
156
+ 3. **Export settings**:
157
+ - Format: MP4
158
+ - Resolution: 1080p (1920x1080) or 720p (1280x720)
159
+ - Frame rate: 30fps
160
+ - Bitrate: At least 5 Mbps for good quality
161
+
162
+ 4. **Upload**:
163
+ - YouTube (recommended - can embed in README)
164
+ - Loom (easiest, shareable link)
165
+ - Google Drive (make sure it's publicly accessible)
166
+
167
+ 5. **Update README.md**:
168
+ - Add video link under "Demo Video" section
169
+ - Update BUILD_PLAN.md to mark video as complete
170
+
171
+ ---
172
+
173
+ ## πŸ’‘ RECORDING TIPS
174
+
175
+ ### DO:
176
+ - Speak clearly and at moderate pace
177
+ - Show each feature for at least 5 seconds
178
+ - Let visual changes complete before moving on
179
+ - Smile while talking (it affects your voice tone!)
180
+
181
+ ### DON'T:
182
+ - Rush through features
183
+ - Use filler words ("um", "uh", "like")
184
+ - Apologize for anything
185
+ - Go over 5 minutes (judges won't watch it all)
186
+
187
+ ### IF SOMETHING GOES WRONG:
188
+ - Pause, take a breath, and continue from that section
189
+ - You can edit out mistakes later
190
+ - Or just re-record that section
191
+
192
+ ---
193
+
194
+ ## πŸŽ₯ EASIEST RECORDING METHOD (Loom)
195
+
196
+ 1. Install Loom browser extension: https://loom.com
197
+ 2. Click Loom icon β†’ "Start Recording"
198
+ 3. Select "Screen + Camera" (or just "Screen Only")
199
+ 4. Choose "Current Tab"
200
+ 5. Click "Start Recording"
201
+ 6. Follow the script above
202
+ 7. Click "Stop" when done
203
+ 8. Loom auto-uploads and gives you a shareable link
204
+ 9. Download the MP4 if needed
205
+
206
+ **Total time: 5-10 minutes including setup!**
207
+
208
+ ---
209
+
210
+ ## πŸ“Š SUGGESTED TIMELINE
211
+
212
+ | Time | Section | Key Action |
213
+ |------|---------|------------|
214
+ | 0:00 | Intro | Show banner, introduce yourself |
215
+ | 0:15 | Problem | Explain data lineage challenge |
216
+ | 0:35 | AI Assistant | Demo Gemini chatbot generating lineage |
217
+ | 1:05 | MCP | Show MCP server integration |
218
+ | 1:30 | Demo Gallery | Load complex sample + export |
219
+ | 1:55 | Features | Interactive graph, downloads |
220
+ | 2:15 | CTA | Website link, HF Space, thank you |
221
+
222
+ **Total: ~2.5 minutes** βœ…
223
+
224
+ ---
225
+
226
+ Good luck with the recording! 🎬
README.md CHANGED
@@ -279,7 +279,16 @@ python test_setup.py
279
 
280
  ### Demo Video
281
 
282
- [Link to demo video - Coming Soon]
 
 
 
 
 
 
 
 
 
283
 
284
  ### Social Media Post
285
 
 
279
 
280
  ### Demo Video
281
 
282
+ πŸ“Ί **YouTube**: [Watch the Demo](https://youtu.be/U4Dfc7txa_0)
283
+ πŸŽ₯ **Loom**: [Alternative Link](https://www.loom.com/share/3de27e88e01f4e97bfd13e4f0031f416)
284
+
285
+ **Highlights**:
286
+
287
+ - AI Assistant with Google Gemini generating lineage from natural language
288
+ - MCP Integration with Local Demo server
289
+ - Demo Gallery with 50+ node complex pipelines
290
+ - Export to Collibra, Purview, and Apache Atlas
291
+ - Interactive Mermaid visualizations with zoom and download
292
 
293
  ### Social Media Post
294
 
YOUTUBE_DESCRIPTION.md ADDED
@@ -0,0 +1,183 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YouTube Description for Lineage Graph Accelerator Demo
2
+
3
+ ---
4
+
5
+ ## Title Options:
6
+
7
+ **Option 1 (Recommended):**
8
+ Lineage Graph Accelerator - AI-Powered Data Lineage with Gradio 6 & MCP
9
+
10
+ **Option 2:**
11
+ Automate Data Lineage Extraction with AI | Gradio Agents & MCP Hackathon 2025
12
+
13
+ **Option 3:**
14
+ Data Lineage Made Easy: Gradio 6 + Google Gemini + MCP Integration
15
+
16
+ ---
17
+
18
+ ## Description:
19
+
20
+ ```
21
+ πŸš€ Lineage Graph Accelerator - AI-Powered Data Lineage Extraction & Visualization
22
+
23
+ Tired of manually documenting data pipelines? This tool automatically extracts and visualizes data lineage from dbt, Airflow, SQL, BigQuery, and more - powered by Gradio 6, Google Gemini AI, and Model Context Protocol (MCP).
24
+
25
+ Built for the Gradio Agents & MCP Hackathon - Winter 2025 πŸŽ‚
26
+
27
+ πŸ”— Try it Live: https://huggingface.co/spaces/aamanlamba/Lineage-graph-accelerator
28
+
29
+ ✨ Key Features:
30
+ β€’ AI Assistant: Generate lineage from natural language using Google Gemini
31
+ β€’ MCP Integration: Connect to Model Context Protocol servers for metadata
32
+ β€’ Multiple Input Formats: dbt manifests, Airflow DAGs, SQL DDL, BigQuery, custom JSON
33
+ β€’ Interactive Visualizations: Mermaid diagrams with zoom, PNG/SVG export
34
+ β€’ Enterprise Export: OpenLineage, Collibra, Microsoft Purview, Alation, Apache Atlas
35
+ β€’ Demo Gallery: Pre-built samples with 50+ node complex pipelines
36
+
37
+ 🎯 Real-World Impact:
38
+ Solve data governance and compliance challenges by automatically documenting data flows across your entire data platform. Perfect for data engineers, analysts, and compliance teams.
39
+
40
+ πŸ“š Documentation:
41
+ β€’ GitHub: https://github.com/aamanlamba/lineage-graph-accelerator
42
+ β€’ User Guide: Full documentation included
43
+ β€’ Author: https://aamanlamba.com
44
+
45
+ πŸ† Competition:
46
+ Gradio Agents & MCP Hackathon - Winter 2025
47
+ Track 2: MCP in Action (Productivity)
48
+ Celebrating MCP's 1st Birthday!
49
+
50
+ πŸ› οΈ Tech Stack:
51
+ β€’ Gradio 6.0 - Modern UI framework
52
+ β€’ Google Gemini API - AI-powered lineage generation
53
+ β€’ Model Context Protocol - Metadata extraction
54
+ β€’ Mermaid.js - Interactive graph visualization
55
+ β€’ Python - Backend processing
56
+
57
+ πŸ’‘ Use Cases:
58
+ βœ“ Data governance and compliance documentation
59
+ βœ“ Impact analysis for data changes
60
+ βœ“ Onboarding new team members to complex pipelines
61
+ βœ“ Migration planning and data catalog integration
62
+ βœ“ Automated lineage for CI/CD pipelines
63
+
64
+ πŸ“Š What You'll See in This Demo:
65
+ 0:00 - Introduction & Problem Statement
66
+ 0:35 - AI Assistant (Gemini) generating lineage from natural language
67
+ 1:05 - MCP Integration with Local Demo server
68
+ 1:30 - Demo Gallery with complex samples
69
+ 1:55 - Export to data catalogs (Collibra, Purview, Atlas)
70
+ 2:15 - Interactive features & Call to Action
71
+
72
+ πŸ”” Subscribe for more AI + Data Engineering tools!
73
+
74
+ #Gradio #MCP #DataLineage #AI #DataEngineering #GoogleGemini #HuggingFace #DataGovernance #Hackathon #Python #DataCatalog #MLOps #Analytics
75
+ ```
76
+
77
+ ---
78
+
79
+ ## Tags (if uploading to YouTube):
80
+
81
+ ```
82
+ gradio, mcp, data lineage, google gemini, ai, data engineering, huggingface, model context protocol, data governance, data catalog, dbt, airflow, sql, bigquery, collibra, purview, alation, atlas, openlineage, python, machine learning, mlops, data analytics, hackathon, gradio 6
83
+ ```
84
+
85
+ ---
86
+
87
+ ## Thumbnail Ideas (if you want to create one):
88
+
89
+ **Text Overlay:**
90
+ ```
91
+ LINEAGE GRAPH
92
+ ACCELERATOR
93
+ AI-Powered | Gradio 6 | MCP
94
+ ```
95
+
96
+ **Visual Elements:**
97
+ - Screenshot of the purple gradient banner
98
+ - Screenshot of a complex lineage graph
99
+ - "AI-Powered" badge
100
+ - Your photo or avatar
101
+ - HuggingFace logo
102
+
103
+ **Colors:**
104
+ - Purple gradient (#667eea to #764ba2)
105
+ - White text
106
+ - High contrast for readability
107
+
108
+ ---
109
+
110
+ ## Social Media Snippet (for embedding):
111
+
112
+ ```
113
+ πŸš€ Just launched Lineage Graph Accelerator for the Gradio Agents & MCP Hackathon!
114
+
115
+ ✨ AI-powered data lineage extraction with:
116
+ β€’ Google Gemini natural language generation
117
+ β€’ MCP integration for metadata
118
+ β€’ Export to Collibra, Purview, Atlas
119
+ β€’ Interactive Mermaid visualizations
120
+
121
+ πŸ”— Try it: https://huggingface.co/spaces/aamanlamba/Lineage-graph-accelerator
122
+ πŸŽ₯ Demo: [YouTube Link]
123
+
124
+ #Gradio #MCP #DataLineage #AI
125
+ ```
126
+
127
+ ---
128
+
129
+ ## LinkedIn Post Version:
130
+
131
+ ```
132
+ πŸš€ Excited to share my submission for the Gradio Agents & MCP Hackathon - Winter 2025!
133
+
134
+ Introducing: **Lineage Graph Accelerator** - An AI-powered tool that automatically extracts and visualizes data lineage from modern data platforms.
135
+
136
+ 🎯 The Problem:
137
+ Data engineers spend hours manually documenting data pipelines. Documentation quickly becomes outdated. Impact analysis requires tribal knowledge.
138
+
139
+ πŸ’‘ The Solution:
140
+ Automated lineage extraction from dbt, Airflow, SQL, BigQuery + natural language using Google Gemini AI, powered by Model Context Protocol (MCP) and Gradio 6.
141
+
142
+ ✨ Key Features:
143
+ β€’ AI Assistant for generating lineage from descriptions
144
+ β€’ MCP integration for real-time metadata
145
+ β€’ Export to Collibra, Microsoft Purview, Alation, Apache Atlas
146
+ β€’ Interactive visualizations with zoom and export
147
+ β€’ 50+ node complex pipeline support
148
+
149
+ πŸ”— Try it live: https://huggingface.co/spaces/aamanlamba/Lineage-graph-accelerator
150
+ πŸŽ₯ Demo video: [YouTube Link]
151
+ πŸ’» GitHub: https://github.com/aamanlamba/lineage-graph-accelerator
152
+
153
+ Built with: #Gradio #MCP #GoogleGemini #Python #DataEngineering
154
+
155
+ Thanks to @Hugging Face, @Gradio, and @Anthropic for hosting this amazing hackathon! πŸŽ‚
156
+
157
+ What data governance challenges are you facing? Let me know in the comments!
158
+
159
+ #DataLineage #AI #DataGovernance #DataEngineering #MLOps #HuggingFace #Hackathon
160
+ ```
161
+
162
+ ---
163
+
164
+ ## X/Twitter Post Version:
165
+
166
+ ```
167
+ πŸš€ Just shipped Lineage Graph Accelerator for the @Gradio + MCP Hackathon!
168
+
169
+ AI-powered data lineage extraction with:
170
+ ✨ @Google Gemini natural language generation
171
+ ✨ MCP integration
172
+ ✨ Export to Collibra, Purview, Atlas
173
+ ✨ Interactive graphs
174
+
175
+ πŸ”— Try it: https://huggingface.co/spaces/aamanlamba/Lineage-graph-accelerator
176
+ πŸŽ₯ Demo: [YouTube Link]
177
+
178
+ #Gradio #MCP #DataLineage #AI
179
+ ```
180
+
181
+ ---
182
+
183
+ Copy any of these and customize as needed! The YouTube description includes all important links, features, and is optimized for search. 🎬