File size: 5,642 Bytes
60ac2eb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 |
# Quick Deployment Guide
Follow these steps to deploy the Lineage Graph Extractor to Hugging Face Spaces:
## Quick Start (5 minutes)
### 1. Create Space
```bash
# Go to: https://huggingface.co/new-space
# Choose: Gradio SDK
# Hardware: CPU Basic (free)
```
### 2. Upload Files
Upload these files from `/hf_space/` to your Space:
- β
`app.py`
- β
`requirements.txt`
- β
`README.md`
- β οΈ `.env.example` (optional reference)
- β οΈ `SETUP_GUIDE.md` (optional)
### 3. Add Secrets
In Space Settings β Repository Secrets, add:
- `ANTHROPIC_API_KEY` - Your Claude API key (**required**)
- `GOOGLE_CLOUD_PROJECT` - For BigQuery (optional)
### 4. Wait for Build
- Space will automatically build (2-3 minutes)
- Check "Logs" tab for any errors
- Once ready, the app will be live!
## Detailed Step-by-Step
### Method 1: Web Interface (Easiest)
1. **Create Space**
- Go to https://huggingface.co/spaces
- Click "Create new Space"
- Name: `lineage-graph-extractor`
- SDK: Gradio
- Click "Create Space"
2. **Upload Files**
- Click "Files and versions"
- Click "Add file" β "Upload files"
- Select all files from `/hf_space/`
- Click "Commit changes"
3. **Configure Secrets**
- Click "Settings"
- Scroll to "Repository secrets"
- Add `ANTHROPIC_API_KEY` with your API key
- Save
4. **Verify Deployment**
- Go to "App" tab
- Wait for build to complete
- Test the interface
### Method 2: Git CLI (For Developers)
```bash
# Clone your Space
git clone https://huggingface.co/spaces/YOUR_USERNAME/lineage-graph-extractor
cd lineage-graph-extractor
# Copy files (adjust path to where you saved the files)
cp /path/to/hf_space/app.py .
cp /path/to/hf_space/requirements.txt .
cp /path/to/hf_space/README.md .
# Commit and push
git add .
git commit -m "Initial deployment"
git push
```
Then add secrets via the web interface (Settings β Repository secrets).
### Method 3: Hugging Face CLI
```bash
# Install Hugging Face CLI
pip install huggingface_hub
# Login
huggingface-cli login
# Create Space
huggingface-cli repo create lineage-graph-extractor --type space --space_sdk gradio
# Upload files
huggingface-cli upload lineage-graph-extractor /path/to/hf_space/ .
```
## Important: Connect Your Agent
β οΈ **The template needs your agent integration!**
The `app.py` file contains placeholder functions. You need to integrate your actual agent:
### Quick Integration Example
Edit `app.py` and replace the `extract_lineage_from_text` function:
```python
import anthropic
import os
client = anthropic.Anthropic(api_key=os.environ.get("ANTHROPIC_API_KEY"))
def extract_lineage_from_text(metadata_text, source_type, viz_format):
"""Extract lineage using Claude AI agent."""
prompt = f"""
You are a lineage extraction expert. Extract data lineage from this {source_type} metadata
and create a {viz_format} visualization.
Metadata:
{metadata_text}
Return:
1. The visualization code
2. A brief summary
"""
response = client.messages.create(
model="claude-3-5-sonnet-20241022",
max_tokens=4000,
messages=[{"role": "user", "content": prompt}]
)
# Parse response to extract visualization and summary
text = response.content[0].text
# Simple parsing (improve this based on your needs)
parts = text.split("---")
visualization = parts[0] if len(parts) > 0 else text
summary = parts[1] if len(parts) > 1 else "Lineage extracted successfully"
return visualization.strip(), summary.strip()
```
### Using Agent Memory Files
To use your full agent configuration:
1. Copy `/memories/` directory to Space:
```bash
cp -r /memories /path/to/space/
```
2. Reference agent instructions in your code:
```python
with open("memories/agent.md") as f:
agent_instructions = f.read()
# Use instructions in prompts
```
## Post-Deployment
### Test Functionality
1. β
Text/File extraction works
2. β
BigQuery integration (if configured)
3. β
URL fetching works
4. β
Visualizations render correctly
### Optimize Performance
- Upgrade hardware if needed (Settings β Hardware)
- Add caching for repeated queries
- Implement rate limiting
### Share Your Space
- Make it public (Settings β Visibility)
- Share URL: `https://huggingface.co/spaces/YOUR_USERNAME/lineage-graph-extractor`
- Add to your profile or collection
## Costs
- **Basic CPU**: Free forever β
- **Upgraded CPU**: ~$0.03/hour
- **GPU**: ~$0.60/hour (if needed for heavy processing)
- **API costs**: Anthropic Claude API usage (pay-as-you-go)
## Troubleshooting
### Build Fails
- Check requirements.txt for incompatible versions
- Review logs for specific error messages
- Ensure Python 3.9+ compatibility
### App Won't Load
- Verify `app.py` has no syntax errors
- Check that `demo.launch()` is called
- Review Space logs
### API Errors
- Verify `ANTHROPIC_API_KEY` is set correctly
- Check API key has proper permissions
- Monitor API usage and rate limits
### Visualization Issues
- Test Mermaid syntax at https://mermaid.live/
- Ensure proper code block formatting
- Check browser console for rendering errors
## Support
- **Hugging Face Docs**: https://huggingface.co/docs/hub/spaces
- **Gradio Docs**: https://gradio.app/docs
- **Community Forum**: https://discuss.huggingface.co/
## Next Steps
1. β
Deploy to Hugging Face Spaces
2. π§ Integrate your agent backend
3. π§ͺ Test with real metadata
4. π¨ Customize UI/UX
5. π Add analytics
6. π Share with community
---
**Ready to deploy?** Start with Method 1 (Web Interface) - it's the easiest!
|