# 🚀 Quick Setup Guide ## Prerequisites - Python 3.10 or higher - Anthropic API key ## Installation (3 minutes) ### Step 1: Extract and Navigate ```bash unzip gig-market-mcp-app.zip cd gig-market-mcp-app ``` ### Step 2: Install Dependencies ```bash pip install -r requirements.txt ``` **What gets installed:** - Gradio (UI framework) - Anthropic (Claude AI) - LlamaIndex (RAG framework) 🦙 - HuggingFace Embeddings 🤗 - ChromaDB (vector database) - MCP (Model Context Protocol) **Installation time:** ~2-3 minutes ### Step 3: Set API Key ```bash export ANTHROPIC_API_KEY=your_key_here ``` Or create `.env` file: ```bash echo "ANTHROPIC_API_KEY=your_key_here" > .env ``` ### Step 4: Run the App ```bash python app.py ``` **First run:** Will take ~30 seconds to: - Load embedding model (100MB) - Index 50 workers + 50 gigs - Create vector database **Expected output:** ``` 🔄 Loading embedding model... ✅ Vector database ready! 🔄 Loading and indexing data... ✅ Indexed 50 workers and 50 gigs ✅ Data loaded and indexed! Running on local URL: http://127.0.0.1:7860 Running on public URL: https://xxxxx.gradio.live ``` ## Testing (2 minutes) ### Test 1: Find Gigs for Worker 1. Click "Find Gigs for Me" tab 2. Enter: ``` I'm a handyman with 10 years experience. I do plumbing, electrical work, and carpentry. Based in Rome, available weekdays, charge €25/hour ``` 3. Click "Create Profile & Find Gigs (RAG)" 4. **Expected:** Profile + 5 matching gigs with semantic similarity scores ### Test 2: Find Workers for Gig 1. Click "Find Workers for My Gig" tab 2. Enter: ``` Need someone to paint a jungle mural in my kid's bedroom. Wall is 3x4 meters. Madrid area, budget around €400 ``` 3. Click "Create Post & Find Workers (RAG)" 4. **Expected:** Gig post + 5 matching workers with similarity scores ## Troubleshooting ### Error: "ANTHROPIC_API_KEY not found" **Solution:** Set the environment variable ```bash export ANTHROPIC_API_KEY=your_key_here ``` ### Error: "ModuleNotFoundError" **Solution:** Install requirements again ```bash pip install -r requirements.txt --upgrade ``` ### Error: "workers_data.json not found" **Solution:** Generate the data ```bash python generate_data.py ``` ### Slow first query? **Normal!** First query loads the embedding model (~100MB). Subsequent queries are fast (~100ms). ## What to Expect ### First Query (30-60 seconds) - Loading embedding model - Creating vectors - Building index ### Subsequent Queries (2-5 seconds) - Profile/post creation: ~2 seconds (Claude API) - Semantic search: ~100ms (local vector DB) - Result formatting: ~1 second (Claude API) ## Features to Demo ### 1. Semantic Search Show that it finds relevant matches even without exact keyword overlap: - Query: "fix leaking pipes" → Finds "plumber" - Query: "outdoor work" → Finds "gardener" ### 2. Vector Similarity Scores Point out the semantic similarity scores in results ### 3. Large Database Mention "searching through 50 workers/gigs" in real-time ### 4. Sponsor Integration Highlight "Powered by LlamaIndex 🦙 + HuggingFace 🤗" ## File Structure ``` gig-market-mcp-app/ ├── app.py # Main application with RAG ├── generate_data.py # Data generation script ├── workers_data.json # 50 synthetic workers ├── gigs_data.json # 50 synthetic gigs ├── requirements.txt # Python dependencies ├── README.md # Main documentation ├── RAG_ARCHITECTURE.md # Technical deep-dive ├── HACKATHON.md # Submission info ├── SETUP_GUIDE.md # This file ├── .env.example # Environment template ├── .gitignore # Git ignore rules └── LICENSE # MIT license ``` ## Resource Usage **Memory:** - Embedding model: ~100MB - Vector database: ~50MB - ChromaDB: ~50MB - **Total:** ~200MB **Disk:** - Installed packages: ~500MB - App + data: ~30KB - **Total:** ~500MB **CPU:** - Embedding: Light (CPU-only model) - Vector search: Minimal - **Recommended:** 2+ CPU cores ## Next Steps After successful setup: 1. **Read RAG_ARCHITECTURE.md** - Understand the tech 2. **Read HACKATHON.md** - See submission details 3. **Test both flows** - Worker + Employer 4. **Check vector scores** - See semantic matching in action 5. **Deploy to HF Spaces** - Share your demo! ## Support Questions? Check: - `README.md` - Full documentation - `RAG_ARCHITECTURE.md` - Technical details - `HACKATHON.md` - Project overview ## Success Checklist - [x] Python 3.10+ installed - [x] Dependencies installed (`pip install -r requirements.txt`) - [x] API key configured - [x] App running (`python app.py`) - [x] Both tabs tested - [x] Results showing semantic similarity scores - [x] Happy with the matches! **Ready to win the hackathon!** 🏆🎉