File size: 5,646 Bytes
77f56a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f14662
b234660
345f6b1
25435fb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
# Error Fixes Summary

## Issues Identified and Fixed

### 1. ✅ `'Settings' object has no attribute 'ocr_api_url'`

**Error Location:** `src/services/image_ocr.py:33`

**Root Cause:** 
The code was trying to access `settings.ocr_api_url` which doesn't exist in older versions of the config. This happens when running a previous version of the app where `ocr_api_url` wasn't added to the Settings class yet.

**Fix Applied:**
- Added defensive coding using `getattr()` with a fallback default URL
- Default URL: `"https://prithivmlmods-multimodal-ocr3.hf.space"`

**Code Change:**
```python
# Before:
self.api_url = api_url or settings.ocr_api_url

# After:
default_url = getattr(settings, "ocr_api_url", None) or "https://prithivmlmods-multimodal-ocr3.hf.space"
self.api_url = api_url or default_url
```

**File:** `src/services/image_ocr.py`

---

### 2. ✅ `Expected code to be unreachable, but got: ('research_complete', False)`

**Error Location:** `src/orchestrator/graph_orchestrator.py` (decision node execution)

**Root Cause:**
When Pydantic AI encounters a validation error or returns an unexpected format, it may return a tuple like `('research_complete', False)` instead of the expected `KnowledgeGapOutput` object. The decision function was trying to access `result.research_complete` on a tuple, causing the error.

**Fix Applied:**
1. **Enhanced decision function** in `graph_builder.py` to handle tuple formats
2. **Improved tuple handling** in `graph_orchestrator.py` decision node execution
3. **Better reconstruction** of `KnowledgeGapOutput` from validation error tuples

**Code Changes:**

**File: `src/agent_factory/graph_builder.py`**
- Replaced lambda with named function `_decision_function()` that handles tuples
- Added logic to extract `research_complete` from various tuple formats
- Handles: `('research_complete', False)`, dicts in tuples, boolean values in tuples

**File: `src/orchestrator/graph_orchestrator.py`**
- Enhanced tuple detection and reconstruction in `_execute_decision_node()`
- Added specific handling for `('research_complete', False)` format
- Improved fallback logic for unexpected tuple formats
- Better error messages and logging

**File: `src/orchestrator/graph_orchestrator.py` (agent node execution)**
- Improved handling of tuple outputs in `_execute_agent_node()`
- Better reconstruction of `KnowledgeGapOutput` from validation errors
- More graceful fallback for non-knowledge_gap nodes

---

### 3. ⚠️ `Local state is not initialized - app is not locally available` (Modal TTS)

**Error Location:** Modal TTS service

**Root Cause:**
This is expected behavior when Modal credentials are not configured or the app is not running in a Modal environment. It's not a critical error - TTS will simply be unavailable.

**Status:** 
- This is **not an error** - it's expected when Modal isn't configured
- The app gracefully degrades and continues without TTS
- Users can still use the app, just without audio output

**No Fix Needed:** This is working as designed with graceful degradation.

---

### 4. ⚠️ `Invalid file descriptor: -1` (Asyncio cleanup)

**Error Location:** Python asyncio event loop cleanup

**Root Cause:**
This is a Python asyncio cleanup warning that occurs during shutdown. It's not critical and doesn't affect functionality.

**Status:**
- This is a **warning**, not an error
- Occurs during application shutdown
- Doesn't affect runtime functionality
- Common in Python 3.11+ with certain asyncio patterns

**No Fix Needed:** This is a known Python asyncio quirk and doesn't impact functionality.

---

### 5. ⚠️ MCP Server Warning: `gr.State input will not be updated between tool calls`

**Error Location:** Gradio MCP server setup

**Root Cause:**
Some MCP tools use `gr.State` inputs, which Gradio warns won't update between tool calls. This is a limitation of how MCP tools interact with Gradio state.

**Status:**
- This is a **warning**, not an error
- MCP tools will still work, but state won't persist between calls
- This is a known Gradio MCP limitation

**No Fix Needed:** This is a Gradio limitation, not a bug in our code.

---

## Summary of Fixes

### Critical Fixes (Applied):
1. ✅ **OCR API URL Attribute Error** - Fixed with defensive coding
2. ✅ **Graph Orchestrator Tuple Handling** - Fixed with enhanced tuple detection and reconstruction

### Non-Critical (Expected Behavior):
3. ⚠️ **Modal TTS Error** - Expected when Modal not configured (graceful degradation)
4. ⚠️ **Asyncio Cleanup Warning** - Python asyncio quirk (non-critical)
5. ⚠️ **MCP State Warning** - Gradio limitation (non-critical)

## Testing Recommendations

1. **Test OCR functionality:**
   - Upload an image with text
   - Verify OCR processing works
   - Check logs for any remaining errors

2. **Test graph execution:**
   - Run a research query
   - Verify knowledge gap evaluation works
   - Check that decision nodes route correctly
   - Monitor logs for tuple handling warnings

3. **Test with/without Modal:**
   - Verify app works without Modal credentials
   - Test TTS if Modal is configured
   - Verify graceful degradation

## Files Modified

1. `src/services/image_ocr.py` - Added defensive `ocr_api_url` access
2. `src/orchestrator/graph_orchestrator.py` - Enhanced tuple handling in decision and agent nodes
3. `src/agent_factory/graph_builder.py` - Improved decision function to handle tuples

## Next Steps

1. Test the fixes with the reported error scenarios
2. Monitor logs for any remaining issues
3. Consider adding unit tests for tuple handling edge cases
4. Document the tuple format handling for future reference