Spaces:
Running
on
Zero
Running
on
Zero
Add text-to-speech (TTS) sample
Browse files- app.py +11 -0
- requirements.txt +3 -0
- text_to_speech.py +11 -0
app.py
CHANGED
|
@@ -5,6 +5,7 @@ from huggingface_hub import InferenceClient
|
|
| 5 |
from image_classification import image_classification
|
| 6 |
from image_to_text import image_to_text
|
| 7 |
from text_to_image import text_to_image
|
|
|
|
| 8 |
from utils import request_image
|
| 9 |
|
| 10 |
|
|
@@ -62,6 +63,16 @@ class App:
|
|
| 62 |
inputs=image_classification_image_input,
|
| 63 |
outputs=image_classification_output
|
| 64 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
|
| 66 |
demo.launch()
|
| 67 |
|
|
|
|
| 5 |
from image_classification import image_classification
|
| 6 |
from image_to_text import image_to_text
|
| 7 |
from text_to_image import text_to_image
|
| 8 |
+
from text_to_speech import text_to_speech
|
| 9 |
from utils import request_image
|
| 10 |
|
| 11 |
|
|
|
|
| 63 |
inputs=image_classification_image_input,
|
| 64 |
outputs=image_classification_output
|
| 65 |
)
|
| 66 |
+
with gr.Tab("Text-to-speech (TTS)"):
|
| 67 |
+
gr.Markdown("Generate speech from a text.")
|
| 68 |
+
text_to_speech_text = gr.Textbox(label="Text")
|
| 69 |
+
text_to_speech_generate_button = gr.Button("Generate")
|
| 70 |
+
text_to_speech_output = gr.Audio(label="Speech")
|
| 71 |
+
text_to_speech_generate_button.click(
|
| 72 |
+
fn=text_to_speech,
|
| 73 |
+
inputs=text_to_speech_text,
|
| 74 |
+
outputs=text_to_speech_output
|
| 75 |
+
)
|
| 76 |
|
| 77 |
demo.launch()
|
| 78 |
|
requirements.txt
CHANGED
|
@@ -5,3 +5,6 @@ pandas>=2.0.0
|
|
| 5 |
pillow>=10.0.0
|
| 6 |
requests>=2.31.0
|
| 7 |
transformers>=4.40.0
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
pillow>=10.0.0
|
| 6 |
requests>=2.31.0
|
| 7 |
transformers>=4.40.0
|
| 8 |
+
timm>=1.0.0
|
| 9 |
+
inflect>=7.0.0
|
| 10 |
+
phonemizer>=3.0.0
|
text_to_speech.py
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gc
|
| 2 |
+
from transformers import pipeline
|
| 3 |
+
from utils import spaces_gpu
|
| 4 |
+
|
| 5 |
+
@spaces_gpu
|
| 6 |
+
def text_to_speech(text: str) -> tuple[int, bytes]:
|
| 7 |
+
narrator = pipeline("text-to-speech", "kakao-enterprise/vits-ljs")
|
| 8 |
+
del narrator
|
| 9 |
+
gc.collect()
|
| 10 |
+
result = narrator(text)
|
| 11 |
+
return (result["sampling_rate"], result["audio"][0])
|