Spaces:
Running
on
Zero
Running
on
Zero
Add AI-generated chat sample
Browse files- app.py +28 -0
- chatbot.py +66 -0
- image_to_text.py +4 -1
- text_to_speech.py +6 -2
app.py
CHANGED
|
@@ -3,6 +3,7 @@ from functools import partial
|
|
| 3 |
import gradio as gr
|
| 4 |
from huggingface_hub import InferenceClient
|
| 5 |
from automatic_speech_recognition import automatic_speech_recognition
|
|
|
|
| 6 |
from image_classification import image_classification
|
| 7 |
from image_to_text import image_to_text
|
| 8 |
from text_to_image import text_to_image
|
|
@@ -91,6 +92,33 @@ class App:
|
|
| 91 |
inputs=audio_transcription_audio_input,
|
| 92 |
outputs=audio_transcription_output
|
| 93 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 94 |
|
| 95 |
demo.launch()
|
| 96 |
|
|
|
|
| 3 |
import gradio as gr
|
| 4 |
from huggingface_hub import InferenceClient
|
| 5 |
from automatic_speech_recognition import automatic_speech_recognition
|
| 6 |
+
from chatbot import chat
|
| 7 |
from image_classification import image_classification
|
| 8 |
from image_to_text import image_to_text
|
| 9 |
from text_to_image import text_to_image
|
|
|
|
| 92 |
inputs=audio_transcription_audio_input,
|
| 93 |
outputs=audio_transcription_output
|
| 94 |
)
|
| 95 |
+
with gr.Tab("Chat"):
|
| 96 |
+
gr.Markdown("Have a conversation with an AI chatbot.")
|
| 97 |
+
chatbot_history = gr.State(value=None) # Store the conversation history.
|
| 98 |
+
chatbot_output = gr.Chatbot(label="Conversation")
|
| 99 |
+
chatbot_input = gr.Textbox(label="Your message")
|
| 100 |
+
chatbot_send_button = gr.Button("Send")
|
| 101 |
+
|
| 102 |
+
def chat_interface(message: str, history: list | None, conversation_state: list[dict] | None):
|
| 103 |
+
"""Handle chatbot interaction with Gradio chat format."""
|
| 104 |
+
if not message.strip():
|
| 105 |
+
return history, conversation_state, ""
|
| 106 |
+
response, updated_conversation = chat(message, conversation_state) # Get response from chatbot.
|
| 107 |
+
if history is None: # Update Gradio chat history format: list of [user_message, bot_message] pairs.
|
| 108 |
+
history = []
|
| 109 |
+
history.append([message, response])
|
| 110 |
+
return history, updated_conversation, "" # Clear input field for the next message from the user.
|
| 111 |
+
|
| 112 |
+
chatbot_send_button.click(
|
| 113 |
+
fn=chat_interface,
|
| 114 |
+
inputs=[chatbot_input, chatbot_output, chatbot_history],
|
| 115 |
+
outputs=[chatbot_output, chatbot_history, chatbot_input]
|
| 116 |
+
)
|
| 117 |
+
chatbot_input.submit(
|
| 118 |
+
fn=chat_interface,
|
| 119 |
+
inputs=[chatbot_input, chatbot_output, chatbot_history],
|
| 120 |
+
outputs=[chatbot_output, chatbot_history, chatbot_input]
|
| 121 |
+
)
|
| 122 |
|
| 123 |
demo.launch()
|
| 124 |
|
chatbot.py
ADDED
|
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from os import getenv
|
| 2 |
+
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
| 3 |
+
from utils import get_pytorch_device, spaces_gpu
|
| 4 |
+
|
| 5 |
+
# Global chatbot instance (initialized once)
|
| 6 |
+
_chatbot = None
|
| 7 |
+
_tokenizer = None
|
| 8 |
+
|
| 9 |
+
def get_chatbot():
|
| 10 |
+
global _chatbot, _tokenizer
|
| 11 |
+
if _chatbot is None:
|
| 12 |
+
model_id = getenv("CHAT_MODEL")
|
| 13 |
+
device = get_pytorch_device()
|
| 14 |
+
_tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 15 |
+
_chatbot = AutoModelForSeq2SeqLM.from_pretrained(
|
| 16 |
+
model_id,
|
| 17 |
+
use_safetensors=True # Use safetensors to avoid torch.load restriction
|
| 18 |
+
).to(device)
|
| 19 |
+
return _chatbot, _tokenizer
|
| 20 |
+
|
| 21 |
+
@spaces_gpu
|
| 22 |
+
def chat(message: str, conversation_history: list[dict] | None) -> tuple[str, list[dict]]:
|
| 23 |
+
model, tokenizer = get_chatbot()
|
| 24 |
+
|
| 25 |
+
# Initialize conversation history if this is the first message
|
| 26 |
+
if conversation_history is None:
|
| 27 |
+
conversation_history = []
|
| 28 |
+
|
| 29 |
+
# Add the user's message
|
| 30 |
+
conversation_history.append({"role": "user", "content": message})
|
| 31 |
+
|
| 32 |
+
# For BlenderBot models, format conversation as dialogue history
|
| 33 |
+
# Build the full conversation context as a string
|
| 34 |
+
dialogue_text = ""
|
| 35 |
+
for msg in conversation_history:
|
| 36 |
+
if msg["role"] == "user":
|
| 37 |
+
dialogue_text += f"User: {msg['content']}\n"
|
| 38 |
+
elif msg["role"] == "assistant":
|
| 39 |
+
dialogue_text += f"Assistant: {msg['content']}\n"
|
| 40 |
+
|
| 41 |
+
# Tokenize the input
|
| 42 |
+
inputs = tokenizer([dialogue_text], return_tensors="pt", truncation=True, max_length=512)
|
| 43 |
+
device = get_pytorch_device()
|
| 44 |
+
inputs = {k: v.to(device) for k, v in inputs.items()}
|
| 45 |
+
|
| 46 |
+
# Generate response
|
| 47 |
+
outputs = model.generate(
|
| 48 |
+
**inputs,
|
| 49 |
+
max_new_tokens=128,
|
| 50 |
+
do_sample=True,
|
| 51 |
+
temperature=0.7,
|
| 52 |
+
pad_token_id=tokenizer.eos_token_id
|
| 53 |
+
)
|
| 54 |
+
|
| 55 |
+
# Decode the generated tokens - for seq2seq models, this should be just the assistant's response
|
| 56 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 57 |
+
|
| 58 |
+
# Clean up the response - remove any "Assistant:" prefix if present
|
| 59 |
+
response = response.strip()
|
| 60 |
+
if response.startswith("Assistant:"):
|
| 61 |
+
response = response[len("Assistant:"):].strip()
|
| 62 |
+
|
| 63 |
+
# Add the assistant's response to history
|
| 64 |
+
conversation_history.append({"role": "assistant", "content": response})
|
| 65 |
+
|
| 66 |
+
return response, conversation_history
|
image_to_text.py
CHANGED
|
@@ -10,7 +10,10 @@ def image_to_text(image: Image) -> list[str]:
|
|
| 10 |
image_to_text_model_id = getenv("IMAGE_TO_TEXT_MODEL")
|
| 11 |
pytorch_device = get_pytorch_device()
|
| 12 |
processor = AutoProcessor.from_pretrained(image_to_text_model_id)
|
| 13 |
-
model = BlipForConditionalGeneration.from_pretrained(
|
|
|
|
|
|
|
|
|
|
| 14 |
inputs = processor(images=image, return_tensors="pt").to(pytorch_device)
|
| 15 |
generated_ids = model.generate(pixel_values=inputs.pixel_values, num_beams=3, max_length=20, min_length=5)
|
| 16 |
results = processor.batch_decode(generated_ids, skip_special_tokens=True)
|
|
|
|
| 10 |
image_to_text_model_id = getenv("IMAGE_TO_TEXT_MODEL")
|
| 11 |
pytorch_device = get_pytorch_device()
|
| 12 |
processor = AutoProcessor.from_pretrained(image_to_text_model_id)
|
| 13 |
+
model = BlipForConditionalGeneration.from_pretrained(
|
| 14 |
+
image_to_text_model_id,
|
| 15 |
+
use_safetensors=True # Use safetensors to avoid torch.load restriction.
|
| 16 |
+
).to(pytorch_device)
|
| 17 |
inputs = processor(images=image, return_tensors="pt").to(pytorch_device)
|
| 18 |
generated_ids = model.generate(pixel_values=inputs.pixel_values, num_beams=3, max_length=20, min_length=5)
|
| 19 |
results = processor.batch_decode(generated_ids, skip_special_tokens=True)
|
text_to_speech.py
CHANGED
|
@@ -6,8 +6,12 @@ from utils import spaces_gpu
|
|
| 6 |
|
| 7 |
@spaces_gpu
|
| 8 |
def text_to_speech(text: str) -> tuple[int, bytes]:
|
| 9 |
-
narrator = pipeline(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
del narrator
|
| 11 |
gc.collect()
|
| 12 |
-
result = narrator(text)
|
| 13 |
return (result["sampling_rate"], result["audio"][0])
|
|
|
|
| 6 |
|
| 7 |
@spaces_gpu
|
| 8 |
def text_to_speech(text: str) -> tuple[int, bytes]:
|
| 9 |
+
narrator = pipeline(
|
| 10 |
+
"text-to-speech",
|
| 11 |
+
getenv("TEXT_TO_SPEECH_MODEL"),
|
| 12 |
+
model_kwargs={"use_safetensors": True} # Use safetensors to avoid torch.load restriction.
|
| 13 |
+
)
|
| 14 |
+
result = narrator(text)
|
| 15 |
del narrator
|
| 16 |
gc.collect()
|
|
|
|
| 17 |
return (result["sampling_rate"], result["audio"][0])
|